Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106830 by malwaan last updated on 08/Aug/20

∫(( dx)/((√(x^3  )) ^3 (√(1 +^4 (√x^3 ))))) = ?

$$\int\frac{\:{dx}}{\sqrt{{x}^{\mathrm{3}} \:}\:\:^{\mathrm{3}} \sqrt{\mathrm{1}\:+\:^{\mathrm{4}} \sqrt{{x}^{\mathrm{3}} }}}\:=\:? \\ $$

Commented by mathmax by abdo last updated on 07/Aug/20

its seems that ∫ ((tdt)/((1+t^3 )^(1/3) )) is not solvable ...!

$$\mathrm{its}\:\mathrm{seems}\:\mathrm{that}\:\int\:\frac{\mathrm{tdt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\mathrm{is}\:\mathrm{not}\:\mathrm{solvable}\:...! \\ $$

Commented by bobhans last updated on 07/Aug/20

∫ (dx/((x^2 )^(1/4)  ((1+(x^3 )^(1/4) ))^(1/3) )) [ let (x)^(1/4)  = t ]  ∫ ((4t^3  dt)/(t^2  ((1+t^3 ))^(1/3) )) = ∫ ((4t)/((1+t^3 ))^(1/3) ) dt   next...

$$\int\:\frac{\mathrm{dx}}{\sqrt[{\mathrm{4}}]{\mathrm{x}^{\mathrm{2}} }\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{x}^{\mathrm{3}} }}}\:\left[\:\mathrm{let}\:\sqrt[{\mathrm{4}}]{\mathrm{x}}\:=\:\mathrm{t}\:\right] \\ $$$$\int\:\frac{\mathrm{4t}^{\mathrm{3}} \:\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{t}^{\mathrm{3}} }}\:=\:\int\:\frac{\mathrm{4t}}{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{t}^{\mathrm{3}} }}\:\mathrm{dt}\: \\ $$$$\mathrm{next}... \\ $$

Commented by Her_Majesty last updated on 07/Aug/20

this ends up with _2 F_1 −function...

$${this}\:{ends}\:{up}\:{with}\:_{\mathrm{2}} {F}_{\mathrm{1}} −{function}... \\ $$

Commented by malwaan last updated on 07/Aug/20

this is for secondary schools  your−majesty

$${this}\:{is}\:{for}\:{secondary}\:{schools} \\ $$$${your}−{majesty} \\ $$

Commented by Sarah85 last updated on 07/Aug/20

∫ (t/((1+t^3 ))^(1/3) ) dt=_2 F_1  ((1/3); (2/3); (5/3); −t^3 ) ×(t^2 /2)  so Her Majesty is right

$$\int\:\frac{{t}}{\sqrt[{\mathrm{3}}]{\mathrm{1}+{t}^{\mathrm{3}} }}\:{dt}=_{\mathrm{2}} {F}_{\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{3}};\:\frac{\mathrm{2}}{\mathrm{3}};\:\frac{\mathrm{5}}{\mathrm{3}};\:−{t}^{\mathrm{3}} \right)\:×\frac{{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{Her}\:\mathrm{Majesty}\:\mathrm{is}\:\mathrm{right} \\ $$

Commented by malwaan last updated on 08/Aug/20

I= ∫ x^(−(3/2)) (1+ x^(3/4) )^(−(1/3)) dx  t = (((1+ x^(3/4) )/x^(3/4) ))^(1/3)   I think we will get the solution  with elementary functions

$${I}=\:\int\:{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{1}+\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$$${t}\:=\:\left(\frac{\mathrm{1}+\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }{{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${I}\:{think}\:{we}\:{will}\:{get}\:{the}\:{solution} \\ $$$${with}\:{elementary}\:{functions} \\ $$

Commented by malwaan last updated on 08/Aug/20

sorry everybody  I did a mistake when posting  the question

$${sorry}\:{everybody} \\ $$$${I}\:{did}\:{a}\:{mistake}\:{when}\:{posting} \\ $$$${the}\:{question} \\ $$

Answered by malwaan last updated on 08/Aug/20

I= ∫ x^(−(2/3)) (1+x^(3/4) )^(−(1/3)) dx  t=(((1+x^(3/4) )/x^(3/4) ))^(1/3) =(1+x^(−(3/4)) )  t^3 =1+x^(−(3/4))   x^(−(3/4)) = t^3 −1 ; x^(3/4) = (1/(t^3 −1))  x = (t^3  −1)^(−(4/3))   ⇒dx = −4t^2 (t^3 −1)^(−(7/3)) dt  ∫[(t^3 −1)^(−(4/3)) ]^(−(3/2)) [1+(1/(t^3 −1))]^(−(1/3)) (−4t^2 )(t^3 −1)^(−(7/3)) dt  = −4∫ t^2 (t^3 −1)^2 t^(−1) (t^3 −1)^(1/3) (t^3 −1)^(−(7/3)) dt  = −4∫ tdt = −4(t^2 /2) + C  = −2t^2  + C  = −2 ^3 (√((1+ x^(−(3/4)) )^2 ))  + C

$${I}=\:\int\:{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{x}^{\frac{\mathrm{3}}{\mathrm{4}}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$$${t}=\left(\frac{\mathrm{1}+{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }{{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\left(\mathrm{1}+{x}^{−\frac{\mathrm{3}}{\mathrm{4}}} \right) \\ $$$${t}^{\mathrm{3}} =\mathrm{1}+{x}^{−\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${x}^{−\frac{\mathrm{3}}{\mathrm{4}}} =\:{t}^{\mathrm{3}} −\mathrm{1}\:;\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} =\:\frac{\mathrm{1}}{{t}^{\mathrm{3}} −\mathrm{1}} \\ $$$${x}\:=\:\left({t}^{\mathrm{3}} \:−\mathrm{1}\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\Rightarrow{dx}\:=\:−\mathrm{4}{t}^{\mathrm{2}} \left({t}^{\mathrm{3}} −\mathrm{1}\right)^{−\frac{\mathrm{7}}{\mathrm{3}}} {dt} \\ $$$$\int\left[\left({t}^{\mathrm{3}} −\mathrm{1}\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} \right]^{−\frac{\mathrm{3}}{\mathrm{2}}} \left[\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{3}} −\mathrm{1}}\right]^{−\frac{\mathrm{1}}{\mathrm{3}}} \left(−\mathrm{4}{t}^{\mathrm{2}} \right)\left({t}^{\mathrm{3}} −\mathrm{1}\right)^{−\frac{\mathrm{7}}{\mathrm{3}}} {dt} \\ $$$$=\:−\mathrm{4}\int\:{t}^{\mathrm{2}} \left({t}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} {t}^{−\mathrm{1}} \left({t}^{\mathrm{3}} −\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \left({t}^{\mathrm{3}} −\mathrm{1}\right)^{−\frac{\mathrm{7}}{\mathrm{3}}} {dt} \\ $$$$=\:−\mathrm{4}\int\:{tdt}\:=\:−\mathrm{4}\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:+\:{C} \\ $$$$=\:−\mathrm{2}{t}^{\mathrm{2}} \:+\:{C} \\ $$$$=\:−\mathrm{2}\:\:^{\mathrm{3}} \sqrt{\left(\mathrm{1}+\:{x}^{−\frac{\mathrm{3}}{\mathrm{4}}} \right)^{\mathrm{2}} }\:\:+\:{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com