Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 106842 by bobhans last updated on 07/Aug/20

     ○bobhans○  lim_(x→0)  ((((1+sin 4x))^(1/3)  −cos 2x)/(x tan x)) ?

$$\:\:\:\:\:\circ\mathrm{bobhans}\circ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:\mathrm{4x}}\:−\mathrm{cos}\:\mathrm{2x}}{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}\:? \\ $$

Commented by bemath last updated on 07/Aug/20

the limit is DNE

$$\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{DNE}\: \\ $$

Commented by bemath last updated on 07/Aug/20

Commented by bemath last updated on 07/Aug/20

lim_(x→0^− ) f(x)≠lim_(x→0^+ ) f(x)

$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}f}\left(\mathrm{x}\right)\neq\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}f}\left(\mathrm{x}\right) \\ $$

Commented by 1549442205PVT last updated on 07/Aug/20

Thank Sir.The above limit don′t exist  that is correct because lim_(x→0^− ) =−∞  lim_(x→0^+ ) =+∞

$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{The}\:\mathrm{above}\:\mathrm{limit}\:\mathrm{don}'\mathrm{t}\:\mathrm{exist} \\ $$$$\mathrm{that}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{because}\:\underset{\mathrm{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}=−\infty \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}=+\infty \\ $$

Commented by bobhans last updated on 07/Aug/20

yes..limit DNE

$$\mathrm{yes}..\mathrm{limit}\:\mathrm{DNE} \\ $$

Answered by Dwaipayan Shikari last updated on 07/Aug/20

lim_(x→0) ((1+((sin4x)/3)−cos2x)/(xsinx)).cosx  lim_(x→0) ((((4x)/3)−((64x^3 )/(18))+2sin^2 x)/x^2 )=(4/(3x))+2→∞

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+\frac{{sin}\mathrm{4}{x}}{\mathrm{3}}−{cos}\mathrm{2}{x}}{{xsinx}}.{cosx} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{l}{i}\mathrm{m}}\frac{\frac{\mathrm{4}{x}}{\mathrm{3}}−\frac{\mathrm{64}{x}^{\mathrm{3}} }{\mathrm{18}}+\mathrm{2}{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }=\frac{\mathrm{4}}{\mathrm{3}{x}}+\mathrm{2}\rightarrow\infty \\ $$

Commented by Dwaipayan Shikari last updated on 07/Aug/20

Limit doesn′t exist

$${Limit}\:{doesn}'{t}\:{exist} \\ $$

Answered by 1549442205PVT last updated on 07/Aug/20

Multiplying both the numerator and denominator  by the conjugate expression of numerator:  (applying the identity:(a−b)(a^2 +ab+b^2 )=a^3 −b^3 )   ((((1+sin 4x))^(1/3)  −cos 2x)/(x tan x)) =((1+sin4x−cos^3 2x)/(xtanx(^3 (√((1+sin4x)^2 )) +cos2x^3 (√(1+sin4x )) +cos^2 2x)))  =((1+sin4x−cos^3 2x)/(xtanx(^3 (√((1+sin4x)^2 )) +cos2x^3 (√(1+sin4x )) +cos^2 2x)))  Hence,lim_(x→0)  ((((1+sin 4x))^(1/3)  −cos 2x)/(x tan x))=  lm_(x→0)  ((1+sin 4x −cos^3 2x)/(x tan x))×lim_(x→0) (1/(^3 (√((1+sin4x)^2 )) +cos2x^3 (√(1+sin4x )) +cos^2 2x))  lim_(x→0) ((1+sin4x−cos^3 2x)/(xtanx))    =  _(L′Hopital)  lim _(x→0) ((4cos4x+6cos^2 2xsin2x)/(tanx+x(1+tan^2 x))) ×(1/3)  =(4/0)×(1/3)=∞

$$\mathrm{Multiplying}\:\mathrm{both}\:\mathrm{the}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{denominator} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{expression}\:\mathrm{of}\:\mathrm{numerator}: \\ $$$$\left(\mathrm{applying}\:\mathrm{the}\:\mathrm{identity}:\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{a}^{\mathrm{2}} +\mathrm{ab}+\mathrm{b}^{\mathrm{2}} \right)=\mathrm{a}^{\mathrm{3}} −\mathrm{b}^{\mathrm{3}} \right) \\ $$$$\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:\mathrm{4x}}\:−\mathrm{cos}\:\mathrm{2x}}{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}\:=\frac{\mathrm{1}+\mathrm{sin4x}−\mathrm{cos}^{\mathrm{3}} \mathrm{2x}}{\mathrm{xtanx}\left(\:^{\mathrm{3}} \sqrt{\left(\mathrm{1}+\mathrm{sin4x}\right)^{\mathrm{2}} }\:+\mathrm{cos2x}\:^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{sin4x}\:}\:+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}\right)} \\ $$$$=\frac{\mathrm{1}+\mathrm{sin4x}−\mathrm{cos}^{\mathrm{3}} \mathrm{2x}}{\mathrm{xtanx}\left(\:^{\mathrm{3}} \sqrt{\left(\mathrm{1}+\mathrm{sin4x}\right)^{\mathrm{2}} }\:+\mathrm{cos2x}\:^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{sin4x}\:}\:+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}\right)} \\ $$$$\mathrm{Hence},\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:\mathrm{4x}}\:−\mathrm{cos}\:\mathrm{2x}}{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}= \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lm}}\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{4x}\:−\mathrm{cos}\:^{\mathrm{3}} \mathrm{2x}}{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}×\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\:^{\mathrm{3}} \sqrt{\left(\mathrm{1}+\mathrm{sin4x}\right)^{\mathrm{2}} }\:+\mathrm{cos2x}\:^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{sin4x}\:}\:+\mathrm{cos}^{\mathrm{2}} \mathrm{2x}} \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+\mathrm{sin4x}−\mathrm{cos}^{\mathrm{3}} \mathrm{2x}}{\mathrm{xtanx}}\:\:\underset{\mathrm{L}'\mathrm{Hopital}} {\:\:=\:\:}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}\:}\frac{\mathrm{4cos4x}+\mathrm{6cos}^{\mathrm{2}} \mathrm{2xsin2x}}{\mathrm{tanx}+\mathrm{x}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)}\:×\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{4}}{\mathrm{0}}×\frac{\mathrm{1}}{\mathrm{3}}=\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com