Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106867 by Penguin last updated on 07/Aug/20

∀n∈(0, 1)∀x∈R : f(x) = (n/(n−1))x+n  The given function gives a linear line that  goes through points (0, n) and (1−n, 0).  The function changes as n changes.  What area is beneath the shape made as  n goes from 0→1?

$$\forall{n}\in\left(\mathrm{0},\:\mathrm{1}\right)\forall{x}\in\mathbb{R}\::\:{f}\left({x}\right)\:=\:\frac{{n}}{{n}−\mathrm{1}}{x}+{n} \\ $$$$\mathrm{The}\:\mathrm{given}\:\mathrm{function}\:\mathrm{gives}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{line}\:\mathrm{that} \\ $$$$\mathrm{goes}\:\mathrm{through}\:\mathrm{points}\:\left(\mathrm{0},\:{n}\right)\:\mathrm{and}\:\left(\mathrm{1}−{n},\:\mathrm{0}\right). \\ $$$$\mathrm{The}\:\mathrm{function}\:\mathrm{changes}\:\mathrm{as}\:{n}\:\mathrm{changes}. \\ $$$$\mathrm{What}\:\mathrm{area}\:\mathrm{is}\:\mathrm{beneath}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{made}\:\mathrm{as} \\ $$$${n}\:\mathrm{goes}\:\mathrm{from}\:\mathrm{0}\rightarrow\mathrm{1}? \\ $$

Commented by Penguin last updated on 07/Aug/20

Is the solution:  A=∫_0 ^( 1) ∫_0 ^( 1) f dxdn      ??

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{solution}: \\ $$$${A}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} {f}\:{dxdn}\:\:\:\:\:\:?? \\ $$

Commented by Penguin last updated on 07/Aug/20

Commented by Penguin last updated on 07/Aug/20

Always makes triangle with A=(1/2)n(1−n)  A=(1/n)(t_1 +t_2 +...t_n )  t_n =sum of nth triangle     t_n =(1/2)n(1−n)  t_(n+1) (1/2)(n+ε)(1−n−ε)     for infinit triangles:  A=(1/1)∫_0 ^( 1) (1/2)n(1−n)dn  A=(1/2)[(1/2)n^2 −(1/3)n^3 ]_0 ^1   A=(1/(12))  Thks looks wrong, as the plot looks like:  A=1−(π/4)    ((1/4) circle in a sqare)

$$\mathrm{Always}\:\mathrm{makes}\:\mathrm{triangle}\:\mathrm{with}\:{A}=\frac{\mathrm{1}}{\mathrm{2}}{n}\left(\mathrm{1}−{n}\right) \\ $$$${A}=\frac{\mathrm{1}}{{n}}\left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} +...{t}_{{n}} \right) \\ $$$${t}_{{n}} =\mathrm{sum}\:\mathrm{of}\:{n}\mathrm{th}\:\mathrm{triangle} \\ $$$$\: \\ $$$${t}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}{n}\left(\mathrm{1}−{n}\right) \\ $$$${t}_{{n}+\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\left({n}+\varepsilon\right)\left(\mathrm{1}−{n}−\varepsilon\right) \\ $$$$\: \\ $$$$\mathrm{for}\:\mathrm{infinit}\:\mathrm{triangles}: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{1}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}{n}\left(\mathrm{1}−{n}\right){dn} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}{n}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\mathrm{Thks}\:\mathrm{looks}\:\mathrm{wrong},\:\mathrm{as}\:\mathrm{the}\:\mathrm{plot}\:\mathrm{looks}\:\mathrm{like}: \\ $$$${A}=\mathrm{1}−\frac{\pi}{\mathrm{4}}\:\:\:\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{sqare}\right) \\ $$

Answered by Her_Majesty last updated on 07/Aug/20

f_p : y=(p/(p−1))x+p  f_q : y=(q/(q−1))x+q  f_p ∩f_q :  (p/(p−1))x+p=(q/(q−1))x+q  x=(p−1)(q−1)  y=pq  now q→p  x=(p−1)^2   y=p^2   p=1±(√x)  y=(1±(√x))^2 =1±2(√x)+x  your curve y=1−2(√x)+x  ∫_0 ^1 (1−2(√x)+x)dx=[x−(4/3)x^(3/2) +(1/2)x^2 ]_0 ^1 =(1/6)  not sure if this makes sense...

$${f}_{{p}} :\:{y}=\frac{{p}}{{p}−\mathrm{1}}{x}+{p} \\ $$$${f}_{{q}} :\:{y}=\frac{{q}}{{q}−\mathrm{1}}{x}+{q} \\ $$$${f}_{{p}} \cap{f}_{{q}} : \\ $$$$\frac{{p}}{{p}−\mathrm{1}}{x}+{p}=\frac{{q}}{{q}−\mathrm{1}}{x}+{q} \\ $$$${x}=\left({p}−\mathrm{1}\right)\left({q}−\mathrm{1}\right) \\ $$$${y}={pq} \\ $$$${now}\:{q}\rightarrow{p} \\ $$$${x}=\left({p}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${y}={p}^{\mathrm{2}} \\ $$$${p}=\mathrm{1}\pm\sqrt{{x}} \\ $$$${y}=\left(\mathrm{1}\pm\sqrt{{x}}\right)^{\mathrm{2}} =\mathrm{1}\pm\mathrm{2}\sqrt{{x}}+{x} \\ $$$${your}\:{curve}\:{y}=\mathrm{1}−\mathrm{2}\sqrt{{x}}+{x} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{1}−\mathrm{2}\sqrt{{x}}+{x}\right){dx}=\left[{x}−\frac{\mathrm{4}}{\mathrm{3}}{x}^{\mathrm{3}/\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${not}\:{sure}\:{if}\:{this}\:{makes}\:{sense}... \\ $$

Commented by mr W last updated on 07/Aug/20

answer is correct!

$${answer}\:{is}\:{correct}! \\ $$

Answered by mr W last updated on 07/Aug/20

(y/n)+(x/(1−n))=1   ...(i) eqn. of L_1   (y/(n+dn))+(x/(1−n−dn))=1   ...(ii) eqn. of L_2   intersection of (i) and (ii) at (x_1 ,y_1 )  ⇒(y_1 /(n(1−n−dn)))−(y_1 /((n+dn)(1−n)))=(1/(1−n−dn))−(1/(1−n))  ⇒y_1 =n(n+dn)  dA=((y_1 dn)/2)=((n(n+dn)dn)/2)=((n^2 dn)/2)  A=(1/2)∫_0 ^( 1) n^2 dn=(1/2)×(1/3)=(1/6)

$$\frac{{y}}{{n}}+\frac{{x}}{\mathrm{1}−{n}}=\mathrm{1}\:\:\:...\left({i}\right)\:{eqn}.\:{of}\:{L}_{\mathrm{1}} \\ $$$$\frac{{y}}{{n}+{dn}}+\frac{{x}}{\mathrm{1}−{n}−{dn}}=\mathrm{1}\:\:\:...\left({ii}\right)\:{eqn}.\:{of}\:{L}_{\mathrm{2}} \\ $$$${intersection}\:{of}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{at}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right) \\ $$$$\Rightarrow\frac{{y}_{\mathrm{1}} }{{n}\left(\mathrm{1}−{n}−{dn}\right)}−\frac{{y}_{\mathrm{1}} }{\left({n}+{dn}\right)\left(\mathrm{1}−{n}\right)}=\frac{\mathrm{1}}{\mathrm{1}−{n}−{dn}}−\frac{\mathrm{1}}{\mathrm{1}−{n}} \\ $$$$\Rightarrow{y}_{\mathrm{1}} ={n}\left({n}+{dn}\right) \\ $$$${dA}=\frac{{y}_{\mathrm{1}} {dn}}{\mathrm{2}}=\frac{{n}\left({n}+{dn}\right){dn}}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} {dn}}{\mathrm{2}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {n}^{\mathrm{2}} {dn}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by Her_Majesty last updated on 07/Aug/20

thank you

$${thank}\:{you} \\ $$

Commented by mr W last updated on 07/Aug/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com