All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 107036 by john santu last updated on 08/Aug/20
∫1+x2dxx4?
Commented by kaivan.ahmadi last updated on 08/Aug/20
x=tgu⇒dx=(1+tg2u)du=sec2udu1+x2=sec2ux4=tg4u⇒∫secutg4u(sec2u)du=∫sec3utg4udu=∫cosusin4udunowletv=sinu⇒dv=cosudu⇒∫dvv4=∫v−4dv=v−3−3+c=−13v3+c=−13sin3u+c=−13sin(tg−1x)+c
Answered by Dwaipayan Shikari last updated on 08/Aug/20
∫1+tan2θtan4θsec2θdθ∫sec3θtan4θdθ(x=tanθ1=sec2θdθdx∫cosθsin4θdθ−13sin3θ+C=−(1+x2)323x3+C
Answered by bobhans last updated on 08/Aug/20
^bobhans^∫x2(1+1x2)x4dx=∫x1+1x2dxx4=∫1+1x2x3dx.[letu=1+1x2]du=−2x−3dx⇒dxx3=−du2−∫u1/22du=−12×23u3/2+c−13(1+1x2)3+c=−x2+13x2×x2+1x+c=−(x2+1)x2+13x3+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com