Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107069 by mathdave last updated on 08/Aug/20

Answered by bemath last updated on 09/Aug/20

       @bemath@  ((√(cos x)) +(√(sin x)))^5 =((√(cos x))(1+(√(tan x)))^5   = cos^2  x (√(cos x)) (1+(√(tan x)))^5   I= ∫ (((√(tan x)) sec^2 x dx)/((1+(√(tan x)))^5 ))   set 1+(√(tan x)) = z ⇒(√(tan x)) = z−1  ((sec^2 x dx)/(2(√(tan x)))) = dz ⇒dx = ((2(√(tan x)) dz)/(sec^2 x))  I = ∫ (((√(tan x)) sec^2 x)/z^5 ).(((2(√(tan x)))/(sec^2 x)) dz)  I= ∫ ((2(z−1)^2 dz)/z^5 )  I=2∫ ((z^2 −2z+1)/z^5 ) dz = 2∫z^(−3) −2z^(−4) +z^(−5)  dz  I=2(−(1/(2z^2 ))+(2/(3z^3 ))−(1/(4z^4 )))+C  I= −(1/z^2 )+(4/(3z^3 ))−(1/(2z^4 ))+C  I= ((−6z^2 +8z−3)/(6z^4 ))+C   I= ((−6(1+(√(tan x)))^2 +8(√(tan x))+5)/(6(1+(√(tan x)))^4 ))+C

@bemath@(cosx+sinx)5=(cosx(1+tanx)5=cos2xcosx(1+tanx)5I=tanxsec2xdx(1+tanx)5set1+tanx=ztanx=z1sec2xdx2tanx=dzdx=2tanxdzsec2xI=tanxsec2xz5.(2tanxsec2xdz)I=2(z1)2dzz5I=2z22z+1z5dz=2z32z4+z5dzI=2(12z2+23z314z4)+CI=1z2+43z312z4+CI=6z2+8z36z4+CI=6(1+tanx)2+8tanx+56(1+tanx)4+C

Commented by bobhans last updated on 09/Aug/20

I = [((−6(1+(√(tan x)))^2 +8(√(tan x))+5)/(6(1+(√(tan x)))^4 )) ]_0 ^(π/4)   I= [((−6(4)+8+5)/(6.16))]−[((−6+5)/6)]  I= −((11)/(96))+(1/6)= ((−11+16)/(96)) = (5/(96))

I=[6(1+tanx)2+8tanx+56(1+tanx)4]0π4I=[6(4)+8+56.16][6+56]I=1196+16=11+1696=596

Answered by Tony6400 last updated on 08/Aug/20

Evaluate ∫_0 ^(π/4) (((√(sinx))dx)/(((√(cosx))+(√(sinx)))^5 ))               Take ((√(cosx))+(√(sinx)))^5 =[(√(cosx))(1+((√(sinx))/(√(cosx))))]^5 =[(√(cosx))]^4 .(√(cosx))[1+(√(tanx))]^5   =cos^2 x(√(cosx))(1+(√(tanx)))^5   ∴I=∫_0 ^(π/4) ((√(sinx))/(cos^2 x(√(cosx))(1+(√(tanx)))^5 ))dx  ⇒I=∫_0 ^(π/4) (((√(tanx)).sec^2 x)/((1+(√(tanx)))^5 ))dx  Let w=1+(√(tanx))⇒(dw/dx)=((sec^2 x)/(2(√(tanx))))⇒dx=((2(√(tanx)))/(sec^2 x))dw  When x=(π/4),w=2.When  x=0,w=1⇒I=∫_1 ^2 (((√(tanx)).sec^2 x)/w^5 ).((2(√(tanx)))/(sec^2 x))dw  I=2∫_1 ^2 ((tanx)/w^5 )dw=2∫_1 ^2 (((w−1)^2 )/w^5 )dw  ∴I=2∫_1 ^2 ((w^2 −2w+1)/w^5 )dw=2∫_1 ^2 [w^(−3) −2w^(−4) +w^(−5) ]dw  ⇒I=2(−(w^(−2) /2)+(2/3)w^(−3) −(w^(−4) /4))_1 ^2   ⇒I=2[−(1/(2w^2 ))+(2/(3w^3 ))−(1/(4w^4 ))]_1 ^2 =2[(−(1/(2(2)^2 ))+(2/(3(2)^3 ))−(1/(4(2)^4 )))−(((−1)/(2(1)^2 ))+(2/(3(1)^3 ))−(1/(4(1)^4 )))]  I=2[((−1)/8)+(2/(24))−(1/(64))+(1/2)−(2/3)+(1/4)]=2((5/(192)))  ⇒I=(5/(96))⇒∫_0 ^(π/4) ((√(sinx))/(((√(cosx))+(√(sinx)))^5 ))dx=(5/(96))

Evaluate0π4sinxdx(cosx+sinx)5Take(cosx+sinx)5=[cosx(1+sinxcosx)]5=[cosx]4.cosx[1+tanx]5=cos2xcosx(1+tanx)5I=0π4sinxcos2xcosx(1+tanx)5dxI=0π4tanx.sec2x(1+tanx)5dxLetw=1+tanxdwdx=sec2x2tanxdx=2tanxsec2xdwWhenx=π4,w=2.Whenx=0,w=1I=12tanx.sec2xw5.2tanxsec2xdwI=212tanxw5dw=212(w1)2w5dwI=212w22w+1w5dw=212[w32w4+w5]dwI=2(w22+23w3w44)12I=2[12w2+23w314w4]12=2[(12(2)2+23(2)314(2)4)(12(1)2+23(1)314(1)4)]I=2[18+224164+1223+14]=2(5192)I=5960π4sinx(cosx+sinx)5dx=596

Terms of Service

Privacy Policy

Contact: info@tinkutara.com