All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 107069 by mathdave last updated on 08/Aug/20
Answered by bemath last updated on 09/Aug/20
@bemath@(cosx+sinx)5=(cosx(1+tanx)5=cos2xcosx(1+tanx)5I=∫tanxsec2xdx(1+tanx)5set1+tanx=z⇒tanx=z−1sec2xdx2tanx=dz⇒dx=2tanxdzsec2xI=∫tanxsec2xz5.(2tanxsec2xdz)I=∫2(z−1)2dzz5I=2∫z2−2z+1z5dz=2∫z−3−2z−4+z−5dzI=2(−12z2+23z3−14z4)+CI=−1z2+43z3−12z4+CI=−6z2+8z−36z4+CI=−6(1+tanx)2+8tanx+56(1+tanx)4+C
Commented by bobhans last updated on 09/Aug/20
I=[−6(1+tanx)2+8tanx+56(1+tanx)4]0π4I=[−6(4)+8+56.16]−[−6+56]I=−1196+16=−11+1696=596
Answered by Tony6400 last updated on 08/Aug/20
Evaluate∫0π4sinxdx(cosx+sinx)5Take(cosx+sinx)5=[cosx(1+sinxcosx)]5=[cosx]4.cosx[1+tanx]5=cos2xcosx(1+tanx)5∴I=∫0π4sinxcos2xcosx(1+tanx)5dx⇒I=∫0π4tanx.sec2x(1+tanx)5dxLetw=1+tanx⇒dwdx=sec2x2tanx⇒dx=2tanxsec2xdwWhenx=π4,w=2.Whenx=0,w=1⇒I=∫12tanx.sec2xw5.2tanxsec2xdwI=2∫12tanxw5dw=2∫12(w−1)2w5dw∴I=2∫12w2−2w+1w5dw=2∫12[w−3−2w−4+w−5]dw⇒I=2(−w−22+23w−3−w−44)12⇒I=2[−12w2+23w3−14w4]12=2[(−12(2)2+23(2)3−14(2)4)−(−12(1)2+23(1)3−14(1)4)]I=2[−18+224−164+12−23+14]=2(5192)⇒I=596⇒∫0π4sinx(cosx+sinx)5dx=596
Terms of Service
Privacy Policy
Contact: info@tinkutara.com