Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107155 by ZiYangLee last updated on 09/Aug/20

Answered by mr W last updated on 09/Aug/20

f(x)=ln x  f(1)=0  f′(x)=(1/x)>0  g(x)=k(x−(1/x))  g(1)=0  g′(x)=k(1+(1/x^2 ))>0 ⇒k>0  that means for x∈[1,∞) and k>0:  f(1)=g(1)=0 and  both f(x) and g(x) are strictly  increasing.  g′(1)≥f′(1) ⇒k(1+(1/1^2 ))≥(1/1)⇒k≥(1/2)  ⇒if k≥(1/2), then f(x)≤g(x) for x∈[1,∞)

$${f}\left({x}\right)=\mathrm{ln}\:{x} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${f}'\left({x}\right)=\frac{\mathrm{1}}{{x}}>\mathrm{0} \\ $$$${g}\left({x}\right)={k}\left({x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$${g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${g}'\left({x}\right)={k}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)>\mathrm{0}\:\Rightarrow{k}>\mathrm{0} \\ $$$${that}\:{means}\:{for}\:{x}\in\left[\mathrm{1},\infty\right)\:{and}\:{k}>\mathrm{0}: \\ $$$${f}\left(\mathrm{1}\right)={g}\left(\mathrm{1}\right)=\mathrm{0}\:{and} \\ $$$${both}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{are}\:{strictly} \\ $$$${increasing}. \\ $$$${g}'\left(\mathrm{1}\right)\geqslant{f}'\left(\mathrm{1}\right)\:\Rightarrow{k}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\right)\geqslant\frac{\mathrm{1}}{\mathrm{1}}\Rightarrow{k}\geqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{if}\:{k}\geqslant\frac{\mathrm{1}}{\mathrm{2}},\:{then}\:{f}\left({x}\right)\leqslant{g}\left({x}\right)\:{for}\:{x}\in\left[\mathrm{1},\infty\right) \\ $$

Commented by ZiYangLee last updated on 09/Aug/20

thanksss

$$\mathrm{thanksss} \\ $$

Commented by ZiYangLee last updated on 09/Aug/20

But special case cannot prove general  case unless you can ensure that there  is no loss of generality. hmmmmm

$$\mathrm{But}\:\mathrm{special}\:\mathrm{case}\:\mathrm{cannot}\:\mathrm{prove}\:\mathrm{general} \\ $$$$\mathrm{case}\:\mathrm{unless}\:\mathrm{you}\:\mathrm{can}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there} \\ $$$$\mathrm{is}\:\mathrm{no}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generality}.\:\mathrm{hmmmmm} \\ $$

Commented by mr W last updated on 09/Aug/20

f′(x)=(1/x)  for k=(1/2):  g′(x)=k(1+(1/x^2 ))≥((2k)/x)=(1/x)=f′(x)  so we have with k=(1/2):  g(1)=f(1) and  g′(x)≥f′(x)  ⇒g(x)≥f(x)

$${f}'\left({x}\right)=\frac{\mathrm{1}}{{x}} \\ $$$${for}\:{k}=\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$${g}'\left({x}\right)={k}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\geqslant\frac{\mathrm{2}{k}}{{x}}=\frac{\mathrm{1}}{{x}}={f}'\left({x}\right) \\ $$$${so}\:{we}\:{have}\:{with}\:{k}=\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$${g}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right)\:{and} \\ $$$${g}'\left({x}\right)\geqslant{f}'\left({x}\right) \\ $$$$\Rightarrow{g}\left({x}\right)\geqslant{f}\left({x}\right) \\ $$

Answered by 1549442205PVT last updated on 09/Aug/20

Consider x>1(for x=1 every k is true)  lnx≤k(x−(1/x))(∗)⇔k≥((lnx)/(x−(1/x)))⇔k≥((xlnx)/(x^2 −1))  Set  f(x)= ((xlnx)/(x^2 −1)) ∀x∈(1;+∞),lim_(x→1) f(x)=(1/2)  we have f ′(x)=(((x^2 −1)(lnx+1)−2x^2 lnx)/((x^2 −1)^2 ))  =((−(x^2 +1)ln(x)+(x^2 −1))/((x^2 −1)^2 ))<0∀x>1  g(x)=−(x^2 +1)ln(x)+x^2 −1  g′(x)=−2xln(x)−((x^2 +1)/x)+2x  =x−2xlnx−(1/x),g′′(x)=1+(1/x^2 )−2lnx−2  =((1/x^2 )−1)−2lnx<0 since 1−(1/x^2 )<0,−2lnx<0 ∀x>1  ⇒g′(x) is decreasing ⇒g′(x)<g′(1)=0  ⇒g(x)is decreasing⇒g(x)<g(1)=0  ⇒f ′(x)=((g(x))/((x^2 −1)^2 ))<0⇒f(x)is decreasing  Hence,f(x)=((xlnx)/(x^2 −1))<supf(x)_(x∈(1;+∞)) =(1/2)∀x>1  Therefore,if choose k=(1/2)then we have  f(x)=((xlnx)/(x^2 −1))<k ∀x>1⇔ln(x)<k(x−(1/x))∀x>1  but since for x=1 we have lnx=k(x−(1/x))  Consequently,lnx≤k(x−(1/x))∀x∈[1;+∞)  the smallest value k satisfying (∗)be  k=(1/2)

$$\mathrm{Consider}\:\mathrm{x}>\mathrm{1}\left(\mathrm{for}\:\mathrm{x}=\mathrm{1}\:\mathrm{every}\:\mathrm{k}\:\mathrm{is}\:\mathrm{true}\right) \\ $$$$\mathrm{lnx}\leqslant\mathrm{k}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)\left(\ast\right)\Leftrightarrow\mathrm{k}\geqslant\frac{\mathrm{lnx}}{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}}\Leftrightarrow\mathrm{k}\geqslant\frac{\mathrm{xlnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{Set}\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{xlnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\forall\mathrm{x}\in\left(\mathrm{1};+\infty\right),\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{lnx}+\mathrm{1}\right)−\mathrm{2x}^{\mathrm{2}} \mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{ln}\left(\mathrm{x}\right)+\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }<\mathrm{0}\forall\mathrm{x}>\mathrm{1} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{ln}\left(\mathrm{x}\right)+\mathrm{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=−\mathrm{2xln}\left(\mathrm{x}\right)−\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}}+\mathrm{2x} \\ $$$$=\mathrm{x}−\mathrm{2xlnx}−\frac{\mathrm{1}}{\mathrm{x}},\mathrm{g}''\left(\mathrm{x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{2lnx}−\mathrm{2} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{1}\right)−\mathrm{2lnx}<\mathrm{0}\:\mathrm{since}\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }<\mathrm{0},−\mathrm{2lnx}<\mathrm{0}\:\forall\mathrm{x}>\mathrm{1} \\ $$$$\Rightarrow\mathrm{g}'\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{decreasing}\:\Rightarrow\mathrm{g}'\left(\mathrm{x}\right)<\mathrm{g}'\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{g}\left(\mathrm{x}\right)\mathrm{is}\:\mathrm{decreasing}\Rightarrow\mathrm{g}\left(\mathrm{x}\right)<\mathrm{g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\mathrm{g}\left(\mathrm{x}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }<\mathrm{0}\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\mathrm{is}\:\mathrm{decreasing} \\ $$$$\mathrm{Hence},\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{xlnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\underset{\mathrm{x}\in\left(\mathrm{1};+\infty\right)} {<\mathrm{supf}\left(\mathrm{x}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\forall\mathrm{x}>\mathrm{1} \\ $$$$\mathrm{Therefore},\mathrm{if}\:\mathrm{choose}\:\mathrm{k}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{then}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{xlnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}<\mathrm{k}\:\forall\mathrm{x}>\mathrm{1}\Leftrightarrow\mathrm{ln}\left(\mathrm{x}\right)<\mathrm{k}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)\forall\mathrm{x}>\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{since}\:\mathrm{for}\:\mathrm{x}=\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:\mathrm{lnx}=\mathrm{k}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$\mathrm{Consequently},\mathrm{lnx}\leqslant\mathrm{k}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)\forall\mathrm{x}\in\left[\mathrm{1};+\infty\right) \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{k}\:\mathrm{satisfying}\:\left(\ast\right)\mathrm{be} \\ $$$$\mathrm{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by 1549442205PVT last updated on 09/Aug/20

Thank you.Sir is right.I mistaked and  now i recorrected

$$\mathrm{Thank}\:\mathrm{you}.\mathrm{Sir}\:\mathrm{is}\:\mathrm{right}.\mathrm{I}\:\mathrm{mistaked}\:\mathrm{and} \\ $$$$\mathrm{now}\:\mathrm{i}\:\mathrm{recorrected}\: \\ $$

Commented by mr W last updated on 09/Aug/20

the question doesn′t request k to be  integer.

$${the}\:{question}\:{doesn}'{t}\:{request}\:{k}\:{to}\:{be} \\ $$$${integer}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com