Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107169 by ZiYangLee last updated on 09/Aug/20

If a,b,c,d∈R  a+b=8  ab+c+d=23  ad+bc=28  cd=12  Find a^2 +b^2 +c^2 +d^2 .

Ifa,b,c,dRa+b=8ab+c+d=23ad+bc=28cd=12Finda2+b2+c2+d2.

Commented by ZiYangLee last updated on 09/Aug/20

Anyone?

Anyone?

Answered by Her_Majesty last updated on 09/Aug/20

(1) a=8−b  −b^2 +8b+c+d=23  bc−bd+8d=28  cd=12  (2) d=23+b^2 −8b−c  2c(b−4)−b^3 +16b^2 −87b+184=28  (b^2 −8b−c+23)c=12  (3) c=((b^2 −12b+39)/2)  b^4 −16b^3 +94b^2 −240b+225=0  (b−5)^2 (b−3)^2 =0  b_1 =3 a_1 =5 c_1 =6 d_1 =2  b_2 =5 a_2 =3 c_2 =2 d_2 =6  a^2 +b^2 +c^2 +d^2 =74

(1)a=8bb2+8b+c+d=23bcbd+8d=28cd=12(2)d=23+b28bc2c(b4)b3+16b287b+184=28(b28bc+23)c=12(3)c=b212b+392b416b3+94b2240b+225=0(b5)2(b3)2=0b1=3a1=5c1=6d1=2b2=5a2=3c2=2d2=6a2+b2+c2+d2=74

Answered by 1549442205PVT last updated on 09/Aug/20

From the hypothesis we get    { ((a+b=8 (1))),((ab+c+d=23(2))),((ad+bc=28(3))),((cd=12(4))) :}  Replace (4) into (2)(3)we get   { ((ab+((12)/c)+c=23)),((((12a)/c)+bc=28)) :}⇔ { ((abc+c^2 +12=23c)),((12a+bc^2 =28c)) :}(5)  Substituting b=12−a into (5)we get   { (((8−a)ac+c^2 +12=23c)),((12a+(8−a)c^2 =28c)) :}⇔ { ((8ac−a^2 c+c^2 +12=23c(6))),((12a+8c^2 −ac^2 =28c(7))) :}  From (7)we have :a=((8c^2 −28c)/(c^2 −12))⇒a^2 =((64c^4 −448c^3 +784c^2 )/(c^4 −24c^2 +144))  Replace into (7) we obtain:  ((8c(8c^2 −28c))/(c^2 −12))−((c(64c^4 −448c^3 +784c^2 ))/(c^4 −24c^2 +144))+c^2 +12=23c  ⇔c^6 −12c^4 −144c^2 +1728+64c^5 −224c^4   −768c^3 +2688c^2 −64c^5 +448c^4 −784c^3   =23c^5 −552c^3 +3312c  ⇔c^6 −23c^5 +212c^4 −1000c^3 +2544c^2 −3312c+1728  =(c−2)^2 (c−3)(c−4)(c−6)^2 =0  ⇔c∈{2,3,4,6}⇒d∈{6,4,3,2}  ⇒a∈{3,4,4,5},b∈{5,4,4,3}  ⇒(a,b,c,d)∈{(3,5,2,6),(4,4,3,4),(4,4,4,3),(5,3,6,2)}  We find out two different values of  S= a^2 +b^2 +c^2 +d^2 being  S=4^2 +4^2 +3^2 +4^2 =57  and S=5^2 +3^2 +6^2 +2^2 =74

Fromthehypothesisweget{a+b=8(1)ab+c+d=23(2)ad+bc=28(3)cd=12(4)Replace(4)into(2)(3)weget{ab+12c+c=2312ac+bc=28{abc+c2+12=23c12a+bc2=28c(5)Substitutingb=12ainto(5)weget{(8a)ac+c2+12=23c12a+(8a)c2=28c{8aca2c+c2+12=23c(6)12a+8c2ac2=28c(7)From(7)wehave:a=8c228cc212a2=64c4448c3+784c2c424c2+144Replaceinto(7)weobtain:8c(8c228c)c212c(64c4448c3+784c2)c424c2+144+c2+12=23cc612c4144c2+1728+64c5224c4768c3+2688c264c5+448c4784c3=23c5552c3+3312cc623c5+212c41000c3+2544c23312c+1728=(c2)2(c3)(c4)(c6)2=0c{2,3,4,6}d{6,4,3,2}a{3,4,4,5},b{5,4,4,3}(a,b,c,d){(3,5,2,6),(4,4,3,4),(4,4,4,3),(5,3,6,2)}WefindouttwodifferentvaluesofS=a2+b2+c2+d2beingS=42+42+32+42=57andS=52+32+62+22=74

Commented by Her_Majesty last updated on 09/Aug/20

you are right... but I don′t fully understand  where/why I′m losing 2 solutions

youareright...butIdontfullyunderstandwhere/whyImlosing2solutions

Terms of Service

Privacy Policy

Contact: info@tinkutara.com