Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107202 by hgrocks last updated on 09/Aug/20

Answered by EmericGent last updated on 09/Aug/20

∫_0 ^(1/2)  ((ln 1-t)/t) dt = -∫_0 ^(1/2) Σ_(k=1) ^∞ (t^(k-1) /k) dt  = -Σ_(k=1) ^∞ (t^k /k^2 )]_0 ^(1/2)  = -Σ_(k=1) ^∞ (1/(k^2 2^k )) = -S  u = ln(1-t) ⇒ u′ = (1/(t-1))  v′ = (1/t) ⇒ v = ln t  ∫_0 ^(1/2)  ((ln 1-t)/t) dt = ln(1-t)ln(t)]_0 ^(1/2) +∫_0 ^(1/2) ((ln t)/(1-t)) dt  u = 1-t ⇒ -du = dt  ∫_0 ^(1/2) ((ln t)/(1-t)) dt = ∫_(1/2) ^1 ((ln(1-u))/u) du  = ∫_0 ^1 ((ln(1-t))/t) dt - ∫_0 ^(1/2)  ((ln 1-t)/t) dt  ⇔∫_0 ^(1/2)  ((ln 1-t)/t) dt = ln^2  2 + ∫_0 ^1 ((ln(1-t))/t) dt - ∫_0 ^(1/2)  ((ln 1-t)/t) dt  ⇔2∫_0 ^(1/2)  ((ln 1-t)/t) dt = ln^2  2 + ∫_0 ^1 ((ln(1-t))/t) dt  ∫_0 ^1 ((ln(1-t))/t) dt = -∫_0 ^1 Σ_(k=1) ^∞ (t^(k-1) /k) dt = -Σ_(k=1) ^∞ (1/k^2 ) = ((-π^2 )/6)  ⇔2∫_0 ^(1/2)  ((ln 1-t)/t) dt = ln^2  2 - (π^2 /6)  ⇔ -2S = ln^2  2 - (π^2 /6)  ⇔ S = (π^2 /(12)) - ((ln^2  2)/2)

01/2ln1ttdt=01/2k=1tk1kdt=k=1tkk2]01/2=k=11k22k=Su=ln(1t)u=1t1v=1tv=lnt01/2ln1ttdt=ln(1t)ln(t)]01/2+01/2lnt1tdtu=1tdu=dt01/2lnt1tdt=1/21ln(1u)udu=01ln(1t)tdt01/2ln1ttdt01/2ln1ttdt=ln22+01ln(1t)tdt01/2ln1ttdt201/2ln1ttdt=ln22+01ln(1t)tdt01ln(1t)tdt=01k=1tk1kdt=k=11k2=π26201/2ln1ttdt=ln22π262S=ln22π26S=π212ln222

Commented by hgrocks last updated on 09/Aug/20

GREAT !! THANKS A LOT ����

Answered by mathmax by abdo last updated on 10/Aug/20

S =Σ_(n=1) ^∞  (1/n^2 )((1/2))^n  ⇒ S =f((1/2))with f(x) = Σ_(n=1) ^∞  (x^n /n^2 )  f^′ (x) =Σ_(n=1) ^∞ (x^(n−1) /n) =(1/x)Σ_(n=1) ^∞  (x^n /n) =−((ln(1−x))/x) ⇒  f(x) =−∫_0 ^x  ((ln(1−t))/t)dt +c  we have c=f(0) =0 ⇒  f(x) =−∫_0 ^x  ((ln(1−t))/t)dt ⇒f((1/2)) =−∫_0 ^(1/2)  ((ln(1−t))/t)dt  we have  by parts ∫_0 ^(1/2)  ((ln(1−t))/t) dt =[lntln(1−t)]_0 ^(1/2)  −∫_0 ^(1/2) lnt×((−1)/(1−t))dt  =ln^2 (2) +∫_0 ^(1/2)  ((ln(t))/(1−t))dt   we have  ∫_0 ^1  ((ln(1−t))/t) dt =∫_0 ^(1/2)  ((ln(1−t))/t)dt +∫_(1/2) ^1  ((ln(1−t))/t) dt(→1−t =u)  =∫_0 ^(1/2)  ((ln(1−t))/t) dt +∫_0 ^(1/2)  ((ln(u))/(1−u)) du  =−f((1/2)) −f((1/2))−ln^2 (2)  =−2f((1/2))−ln^2 (2) ⇒2f((1/2)) =−∫_0 ^1  ((ln(1−t))/t) dt−ln^2 (2)  we have ln^′ (1−t) =((−1)/(1−t)) =−Σ_(n=0) ^∞  t^n  ⇒  ln(1−t) =−Σ_(n=0) ^∞  (1/(n+1))t^(n+1)  +c (c=0) =−Σ_(n=1) ^∞  (t^n /n) ⇒  ((−ln(1−t))/t) =Σ_(n=1) ^∞  (t^(n−1) /n) ⇒∫_0 ^1  ((−ln(1−t))/t)dt =Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) ⇒  2f((1/2)) =(π^2 /6)−ln^2 (2) ⇒ S =f((1/2)) =(π^2 /(12))−((ln^2 2)/2)

S=n=11n2(12)nS=f(12)withf(x)=n=1xnn2f(x)=n=1xn1n=1xn=1xnn=ln(1x)xf(x)=0xln(1t)tdt+cwehavec=f(0)=0f(x)=0xln(1t)tdtf(12)=012ln(1t)tdtwehavebyparts012ln(1t)tdt=[lntln(1t)]012012lnt×11tdt=ln2(2)+012ln(t)1tdtwehave01ln(1t)tdt=012ln(1t)tdt+121ln(1t)tdt(1t=u)=012ln(1t)tdt+012ln(u)1udu=f(12)f(12)ln2(2)=2f(12)ln2(2)2f(12)=01ln(1t)tdtln2(2)wehaveln(1t)=11t=n=0tnln(1t)=n=01n+1tn+1+c(c=0)=n=1tnnln(1t)t=n=1tn1n01ln(1t)tdt=n=11n2=π262f(12)=π26ln2(2)S=f(12)=π212ln222

Terms of Service

Privacy Policy

Contact: info@tinkutara.com