Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107212 by bemath last updated on 09/Aug/20

   ⊚bemath⊚  ∫ x^6  (√(1−x^2 )) dx ?

bemathx61x2dx?

Answered by Ar Brandon last updated on 09/Aug/20

I=∫x^6 (√(1−x^2 ))dx , x=sinθ  I=∫sin^6 θcos^2 θdθ=∫(sin^6 θ−sin^8 θ)dθ  (z−(1/z))^6 =(2isinθ)^6  , z=cosθ+isinθ  z^6 −6z^5 ((1/z))+15z^4 ((1/z^2 ))−20z^3 ((1/z^3 ))+15z^2 ((1/z^4 ))−6z((1/z^5 ))+(1/z^6 )=−64sin^6 θ  z^6 +(1/z^6 )−6(z^4 +(1/z^4 ))+15(z^2 +(1/z^2 ))−20=−64sin^6 θ  2cos6θ−12cos4θ+30cos2θ−20=−64sin^6 θ  (z−(1/z))^8 =(2isinθ)^8   1 7 21 35 35 21 7 1   1 8 28 56 70 56 28 8 1   z^8 +(1/z^8 )−8(z^6 +(1/z^6 ))+28(z^4 +(1/z^4 ))−56(z^2 +(1/z^2 ))+70=256sin^8 θ  2cos8θ−16cos6θ+56cos4θ−112cos2θ+70=256sin^8 θ  ⇒I=−(1/(64))[(2/6)sin6θ−((12)/4)sin4θ+((30)/2)sin2θ−20θ]              −(1/(256))[(2/8)sin8θ−((16)/6)sin6θ+((56)/4)sin4θ−((112)/2)sin2θ+70θ]+C  I=(1/(256))[10θ−4sin2θ−2sin4θ+(4/3)sin6θ−(1/4)sin8θ]+C

I=x61x2dx,x=sinθI=sin6θcos2θdθ=(sin6θsin8θ)dθ(z1z)6=(2isinθ)6,z=cosθ+isinθz66z5(1z)+15z4(1z2)20z3(1z3)+15z2(1z4)6z(1z5)+1z6=64sin6θz6+1z66(z4+1z4)+15(z2+1z2)20=64sin6θ2cos6θ12cos4θ+30cos2θ20=64sin6θ(z1z)8=(2isinθ)817213535217118285670562881z8+1z88(z6+1z6)+28(z4+1z4)56(z2+1z2)+70=256sin8θ2cos8θ16cos6θ+56cos4θ112cos2θ+70=256sin8θI=164[26sin6θ124sin4θ+302sin2θ20θ]1256[28sin8θ166sin6θ+564sin4θ1122sin2θ+70θ]+CI=1256[10θ4sin2θ2sin4θ+43sin6θ14sin8θ]+C

Answered by bobhans last updated on 09/Aug/20

I_1 =∫− (1/2)x^5 (−2x(√(1−x^2 )))dx = ∫−(1/2)x^5 (√(1−x^2 ))d(1−x^2 )  I_1 = −(1/2)x^5 ((2/3)(1−x^2 )^(3/2) )+∫(5/3)x^4 (1−x^2 )^(3/2) dx  I_2 =∫−(5/6)x^3 (−2x(1−x^2 )^(3/2) )dx  I_2 = ∫−(5/6)x^3  (1−x^2 )^(3/2)  d(1−x^2 )  I_2 =−(1/3)x^3  (1−x^2 )^(5/2) +∫x^2 (1−x^2 )^(5/2)  dx  I_3 =∫ −(1/2)x (−2x(1−x^2 )^(5/2) )dx  I_3 = −(1/2)x.(2/7)(1−x^2 )^(7/2) +∫(1/7)(1−x^2 )^(7/2)   I_3 = −(1/7)x(1−x^2 )^(7/2) +∫(1/7)(1−x^2 )^(7/2)  dx

I1=12x5(2x1x2)dx=12x51x2d(1x2)I1=12x5(23(1x2)3/2)+53x4(1x2)3/2dxI2=56x3(2x(1x2)3/2)dxI2=56x3(1x2)3/2d(1x2)I2=13x3(1x2)5/2+x2(1x2)5/2dxI3=12x(2x(1x2)5/2)dxI3=12x.27(1x2)7/2+17(1x2)7/2I3=17x(1x2)7/2+17(1x2)7/2dx

Answered by 1549442205PVT last updated on 10/Aug/20

Set (1/x^2 )−1=u^2 ⇒2udu=−(2/x^3 )dx  ⇒dx=−ux^3 du,(√(1−x^2 ))=ux,x^2 =(1/(u^2 +1))  F=−∫x^6 .(ux)(ux^3 )du=−∫x^(10) u^2 du  =−∫((u^2 du)/((1+u^2 )^5 ))=−∫((u^2 +1−1)/((u^2 +1)^5 ))du  =−∫(du/((1+u^2 )^4 ))+∫(du/((1+u^2 )^5 ))=I_5 −I_4     Apply the current formula:  I_n =(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1)   I_4 =(1/6).(u/((u^2 +1)^3 ))+(5/6)I_3 =  (u/(6(u^2 +1)^3 ))+(5/6)[(1/4).(u/((u^2 +1)^2 ))+(3/4).I_2 ]  =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+(5/8)I_2   =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+(5/8)[(1/2).(u/((u^2 +1)))+(1/2)∫(du/(u^2 +1))]  =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+((5u)/(16(u^2 +1)))+(5/(16))tan^(−1) (u)  I_5 =(1/8).(u/((u^2 +1)^4 ))+(7/8).I_4 .Therefore,  F=I_5 −I_4 =(1/8).(u/((u^2 +1)^4 ))−(1/8)I_4   =(u/(8(u^2 +1)^4 ))−(1/8)[(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+((5u)/(16(u^2 +1)))+(5/(16))tan^(−1) (u)]+C  =(u/(8(u^2 +1)^4 ))−(u/(48(u^2 +1)^3 ))−((5u)/(192(u^2 +1)^2 ))   −((5u)/(128(u^2 +1)))−(5/(128))tan^(−1) (u)+C  Substituting u^2 +1=1/x^2 and u=((√(1−x^2 ))/x)  we get:  F=((x^7 (√(1−x^2 )))/8)−((x^5 (√(1−x^2 )))/(48))−((5x^3 (√(1−x^2 )))/(192))  −((5x(√(1−x^2 )))/(128))−(5/(128))tan^(−1) (((√(1−x^2 ))/x)) +C

Set1x21=u22udu=2x3dxdx=ux3du,1x2=ux,x2=1u2+1F=x6.(ux)(ux3)du=x10u2du=u2du(1+u2)5=u2+11(u2+1)5du=du(1+u2)4+du(1+u2)5=I5I4Applythecurrentformula:In=12a2(n1).t(t2+a2)n1+1a2.2n32n2.In1I4=16.u(u2+1)3+56I3=u6(u2+1)3+56[14.u(u2+1)2+34.I2]=u6(u2+1)3+5u24(u2+1)2+58I2=u6(u2+1)3+5u24(u2+1)2+58[12.u(u2+1)+12duu2+1]=u6(u2+1)3+5u24(u2+1)2+5u16(u2+1)+516tan1(u)I5=18.u(u2+1)4+78.I4.Therefore,F=I5I4=18.u(u2+1)418I4=u8(u2+1)418[u6(u2+1)3+5u24(u2+1)2+5u16(u2+1)+516tan1(u)]+C=u8(u2+1)4u48(u2+1)35u192(u2+1)25u128(u2+1)5128tan1(u)+CSubstitutingu2+1=1/x2andu=1x2xweget:F=x71x28x51x2485x31x21925x1x21285128tan1(1x2x)+C

Answered by mathmax by abdo last updated on 10/Aug/20

A =∫ x^6 (√(1−x^2 ))dx we do the changement x =sint ⇒  A =∫ sin^6 t cos^2 t  dt  =∫ (sin^2 t)^3 (((1+cos(2t))/2))dt  =(1/2)∫ (((1−cos(2t))/2))^3 (1+cos(2t))dt  =(1/(16)) ∫ (1−cos(2t))^2 (1−cos^2 (2t))dt  =(1/(16)) ∫ (1−2cos(2t)+cos^2 (2t))(1−((1+cos(4t))/2))dt  =(1/(32))∫ (((1+cos(4t))/2)+1−2cos(2t))(1−cos(4t))dt  =(1/(64))∫ (3+cos(4t)−4cos(2t))(1−cos(4t))dt  =(1/(64))∫ (3−3cos(4t)+cos(4t)−cos^2 (4t)−4cos(2t)+4cos(2t)cos(4t))dt  =(1/(64))∫ (3−2cos(4t)−((1+cos(8t))/2)−4cos(2t)+2{cos(6t) +cos(2t)})dt  =(1/(128))∫  {6−4cos(4t)−1−cos(8t)−8cos(2t)+4cos(6t)+4cos(2t)}dt  =(1/(128)) ∫ {5 −4cos(4t)−cos(8t)−4cos(2t)+4cos(6t)}dt  =(5/(128))t −(4/(128))∫ cos(4t)dt−(1/(128))∫ cos(8t)dt−(4/(128))∫ cos(2t)dt  +(4/(128))∫ cos(6t)dt  =(5/(128))t −(1/(128))sin(4t)−(1/(8.128))sin(8t)−(1/(64)) sin(2t) +(4/(6.128))sin(6t) +C  t =arcsinx

A=x61x2dxwedothechangementx=sintA=sin6tcos2tdt=(sin2t)3(1+cos(2t)2)dt=12(1cos(2t)2)3(1+cos(2t))dt=116(1cos(2t))2(1cos2(2t))dt=116(12cos(2t)+cos2(2t))(11+cos(4t)2)dt=132(1+cos(4t)2+12cos(2t))(1cos(4t))dt=164(3+cos(4t)4cos(2t))(1cos(4t))dt=164(33cos(4t)+cos(4t)cos2(4t)4cos(2t)+4cos(2t)cos(4t))dt=164(32cos(4t)1+cos(8t)24cos(2t)+2{cos(6t)+cos(2t)})dt=1128{64cos(4t)1cos(8t)8cos(2t)+4cos(6t)+4cos(2t)}dt=1128{54cos(4t)cos(8t)4cos(2t)+4cos(6t)}dt=5128t4128cos(4t)dt1128cos(8t)dt4128cos(2t)dt+4128cos(6t)dt=5128t1128sin(4t)18.128sin(8t)164sin(2t)+46.128sin(6t)+Ct=arcsinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com