Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 107242 by mnjuly1970 last updated on 09/Aug/20

     ...question...              prove that:   if  a,b,c∈R^+  then:       ♣   (√a) +(√b)+(√c)> (√(a+b+c)) ♣          ....sincerly yours...               ... M.N...

$$\:\:\:\:\:...{question}... \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}: \\ $$ $$\:{if}\:\:{a},{b},{c}\in\mathbb{R}^{+} \:{then}: \\ $$ $$\:\:\:\:\:\clubsuit\:\:\:\sqrt{{a}}\:+\sqrt{{b}}+\sqrt{{c}}>\:\sqrt{{a}+{b}+{c}}\:\clubsuit\: \\ $$ $$\:\:\:\:\:\:\:....{sincerly}\:{yours}... \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\mathscr{M}.\mathscr{N}... \\ $$ $$\:\: \\ $$

Answered by abdomathmax last updated on 09/Aug/20

a= x^2  ,b=y^2  ,c =z^2     (i)⇒x+y +z>(√(x^2 +y^2  +z^2 ))  ⇒(x+y+z)^2 >x^2  +y^2  +z^2  ⇒  x^2  +y^2  +z^(2 )  +2(xy +yz +zx)>x^2  +y^2  +z^2   xy +yz +zx >0  condition 5erified if a>0 ,b>0  and c>0

$$\mathrm{a}=\:\mathrm{x}^{\mathrm{2}} \:,\mathrm{b}=\mathrm{y}^{\mathrm{2}} \:,\mathrm{c}\:=\mathrm{z}^{\mathrm{2}} \:\:\:\:\left(\mathrm{i}\right)\Rightarrow\mathrm{x}+\mathrm{y}\:+\mathrm{z}>\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:+\mathrm{z}^{\mathrm{2}} } \\ $$ $$\Rightarrow\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)^{\mathrm{2}} >\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \:+\mathrm{z}^{\mathrm{2}} \:\Rightarrow \\ $$ $$\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \:+\mathrm{z}^{\mathrm{2}\:} \:+\mathrm{2}\left(\mathrm{xy}\:+\mathrm{yz}\:+\mathrm{zx}\right)>\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \:+\mathrm{z}^{\mathrm{2}} \\ $$ $$\mathrm{xy}\:+\mathrm{yz}\:+\mathrm{zx}\:>\mathrm{0}\:\:\mathrm{condition}\:\mathrm{5erified}\:\mathrm{if}\:\mathrm{a}>\mathrm{0}\:,\mathrm{b}>\mathrm{0} \\ $$ $$\mathrm{and}\:\mathrm{c}>\mathrm{0} \\ $$

Commented bymnjuly1970 last updated on 09/Aug/20

thank you

$${thank}\:{you} \\ $$

Commented bymathmax by abdo last updated on 09/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by 1549442205PVT last updated on 09/Aug/20

The inequality (√a)+(√b)+(√c)>(√(a+b+c))  is always true ∀a,b,c∈R^+ since  squaring two sides we get an equivalent inequality  a+b+c+2(√(ab))+2(√(bc))+2(√(ca))>a+b+c  which is always true

$$\mathrm{The}\:\mathrm{inequality}\:\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}>\sqrt{\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$ $$\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\forall\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{R}^{+} \mathrm{since} \\ $$ $$\mathrm{squaring}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{we}\:\mathrm{get}\:\mathrm{an}\:\mathrm{equivalent}\:\mathrm{inequality} \\ $$ $$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}\sqrt{\mathrm{ab}}+\mathrm{2}\sqrt{\mathrm{bc}}+\mathrm{2}\sqrt{\mathrm{ca}}>\mathrm{a}+\mathrm{b}+\mathrm{c} \\ $$ $$\mathrm{which}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true} \\ $$

Commented bymnjuly1970 last updated on 09/Aug/20

      ∗thank you so much∗   thanks

$$\:\:\:\:\:\:\ast{thank}\:{you}\:{so}\:{much}\ast\: \\ $$ $${thanks} \\ $$

Answered by udaythool last updated on 09/Aug/20

By contradiction method:  If for some a, b, c ∈ R^+   (√a)+(√b)+(√c)≤(√(a+b+c))  ⇒0<(√(ab))+(√(ac))+(√(bc)) ≤0  which is absurd.

$$\mathrm{By}\:\mathrm{contradiction}\:\mathrm{method}: \\ $$ $$\mathrm{If}\:\mathrm{for}\:\mathrm{some}\:{a},\:{b},\:{c}\:\in\:\mathbb{R}^{+} \\ $$ $$\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\leqslant\sqrt{{a}+{b}+{c}} \\ $$ $$\Rightarrow\mathrm{0}<\sqrt{{ab}}+\sqrt{{ac}}+\sqrt{{bc}}\:\leqslant\mathrm{0} \\ $$ $$\mathrm{which}\:\mathrm{is}\:\mathrm{absurd}. \\ $$

Commented bymnjuly1970 last updated on 09/Aug/20

nice very nice

$${nice}\:{very}\:{nice} \\ $$

Answered by mnjuly1970 last updated on 09/Aug/20

anwer: 0<(a/(a+b+c))<1⇒(a/(a+b+c))<(√(a/(a+b+c)))  ∗                :0<(b/(a+b+c))<(√(b/(a+b+c)))  ∗∗                        0<(c/(a+b+c))<(√(c/(a+b+c)))  ∗∗∗  ∴         (∗)+(∗∗)+(∗∗∗)⇒1<((  (√a)+(√b)   +(√c))/(√(a+b+c)))      (√(a+b+c)) <(√a) +(√(b )) +(√c)           q.e.d

$${anwer}:\:\mathrm{0}<\frac{{a}}{{a}+{b}+{c}}<\mathrm{1}\Rightarrow\frac{{a}}{{a}+{b}+{c}}<\sqrt{\frac{{a}}{{a}+{b}+{c}}}\:\:\ast \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\::\mathrm{0}<\frac{{b}}{{a}+{b}+{c}}<\sqrt{\frac{{b}}{{a}+{b}+{c}}}\:\:\ast\ast \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}<\frac{{c}}{{a}+{b}+{c}}<\sqrt{\frac{{c}}{{a}+{b}+{c}}}\:\:\ast\ast\ast \\ $$ $$\therefore\:\:\:\:\:\:\:\:\:\left(\ast\right)+\left(\ast\ast\right)+\left(\ast\ast\ast\right)\Rightarrow\mathrm{1}<\frac{\:\:\sqrt{{a}}+\sqrt{{b}}\:\:\:+\sqrt{{c}}}{\sqrt{{a}+{b}+{c}}} \\ $$ $$\:\:\:\:\sqrt{{a}+{b}+{c}}\:<\sqrt{{a}}\:+\sqrt{{b}\:}\:+\sqrt{{c}} \\ $$ $$\:\:\:\:\:\:\:\:\:{q}.{e}.{d} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com