All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 107279 by mathdave last updated on 09/Aug/20
Commented by Dwaipayan Shikari last updated on 10/Aug/20
Asx→0tanx→xlimx→0(xxxxxxxxxxxx??)=1
Answered by 1549442205PVT last updated on 10/Aug/20
WeinsertthesymbolforconvenientIn=limn→∞(limx→0((tanx)(tanx)(tanx)...↽ntimesx⌣ntimesxx...))=limx→0fn(x)gn(x)=wherefk(x)=(tanx)(tanx)(tanx)...↽ktimesgk(x)=xxx....↽ktimesWeprovethatIn=1for∀n∈N,n⩾1Indeed,forn=1wehaveI1=limx→0tanxx=limx→0sinxx.1cosx=1.11=1I2=limx→0tanxtanxxx⇒lnI2=limx→0(lntanxtanxxx)=limx→0(tanxln(tanx)−xln(x))Wehavelimx→0(tanxln(tanx))=J=limx→0lntanx1tanx.Thisistheform∞∞.HenceapplyL′HopitalwegetJ=1+tan2xtanx−1tan2x(1+tan2x)=limx→0(−tanx)=0K=limx→0(xlnx)=limx→0(lnx1x)=limx→01x−1x2=limx→0(−x)=0Thus,lnI2=0⇒I2=e0=1.Weseethattheassertionistrueforn=1,2.Nowsupposethatassertionwastruefor∀n=1,2,....,k.Weneedtoprovethatitisalsoforn=k+1.Indeed,weconsideIk+1=(limx→0((tanx)(tanx)(tanx)...↽(k+1)timesx⌣(k+1)timesxx...))ThenlnIk+1=lim(tanxlnfk(x)xlngk(x))⇒lnIk+1=limx→0[ln(fk(x)tanx)−ln(gk(x)x]+fork=1byaboveproofwastrue+Supposeitistrue∀n=1,2,...,kwhichmeansIk=limx→0(lnfk(x)gk(x))=0∀k=1,2,...,kThenlnIk+1=lim[ln(fk(x)tanxgk(x)x)]=lim[tanxln(fk(x))−xln(gk(x))]=limx→0{tanx[ln(fk(x))−ln(gk(x))]+tanxln(gk(x))}=0since[ln(fk(x))−ln(gk(x))]=0byintroductionthehypothesisandln(xgk(x))→0whenx→0.Indeed,thiscanisprovebyinductionfollowsas:+fork=1wehavelimx→0[xlng1(x)]==limx→0(xlnx)=limx→0lnx1x=limx→01x−1x2=limx→0(−x)=0+Supposeitistrue∀n=1,2,...,kExtra \left or missing \rightExtra \left or missing \right=0.0duetolim[ln(gk(x))]=0(byintroductionthehypothesis).Thisshowthatlimx→0[xln(gk(x))]=0true∀n⩾1Thus,weprovethatlnIk+1=0istrue,sobyintroductionprimciplelnIn=0istrue∀n⩾1.⇒In=e0=1∀n∈N,n⩾1(q.e.d)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com