Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107286 by mathmax by abdo last updated on 09/Aug/20

let f_n (x) =ne^(−nx)   calculate lim_(n→+∞) ∫_0 ^1 f_n (x)dx  and ∫_0 ^1 lim_(n→+∞) f_n (x)dx  is the convergence uniform on [0,1]?

$$\mathrm{let}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{ne}^{−\mathrm{nx}} \:\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]? \\ $$

Answered by mathmax by abdo last updated on 10/Aug/20

we have ∫_0 ^1 f_n (x) =n∫_0 ^1  e^(−nx)  dx =n[−(1/n)e^(−nx) ]_0 ^1  =−(e^(−n) −1)  =1−e^(−n)  ⇒lim_(n→+∞)  ∫_0 ^1 f_n (x)dx =1  we have lim_(n→+∞) f_n (x) =lim_(n→+∞) ne^(−nx)  =0 for x∈[0,1] ⇒  ∫_0 ^1 limf_n (x)dx =0  we see thst lim ∫f_n ≠∫ limf_n  ⇒the convergence  is not uniform on [0,1]

$$\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{nx}} \:\mathrm{dx}\:=\mathrm{n}\left[−\frac{\mathrm{1}}{\mathrm{n}}\mathrm{e}^{−\mathrm{nx}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\left(\mathrm{e}^{−\mathrm{n}} −\mathrm{1}\right) \\ $$$$=\mathrm{1}−\mathrm{e}^{−\mathrm{n}} \:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:=\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{ne}^{−\mathrm{nx}} \:=\mathrm{0}\:\mathrm{for}\:\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{limf}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:=\mathrm{0}\:\:\mathrm{we}\:\mathrm{see}\:\mathrm{thst}\:\mathrm{lim}\:\int\mathrm{f}_{\mathrm{n}} \neq\int\:\mathrm{limf}_{\mathrm{n}} \:\Rightarrow\mathrm{the}\:\mathrm{convergence} \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com