All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 107288 by mathmax by abdo last updated on 09/Aug/20
letun=1n2∏k=1n(n2+k2)1ndeterminelimn→+∞un
Answered by Ar Brandon last updated on 13/Aug/20
un=1n2∏nk=1(n2+k2)1nln(un)=−2ln(n)+ln∏nk=1(n2+k2)1/n=−2ln(n)+1n∑nk=1ln(n2+k2)=−2ln(n)+1n∑nk=1[2ln(n)+ln(1+k2n2)]=−2ln(n)+2ln(n)+1n∑nk=1ln(1+k2n2)limlnn→∞(un)=limn→∞1n∑nk=1ln(1+k2n2)=∫01ln(1+x2)dx=[ln(1+x2)∫dx−∫{dln(1+x2)dx⋅∫dx}dx]01=[xln(1+x2)−∫2x21+x2dx]01=ln2−2∫01{1−11+x2}dx=ln2−2+π2Double subscripts: use braces to clarifyDouble subscripts: use braces to clarify
Terms of Service
Privacy Policy
Contact: info@tinkutara.com