Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 107289 by mathmax by abdo last updated on 09/Aug/20

fnd lim_(n→+∞)   ((((2n)!)/(n^n  n!)))^(1/n)

$$\mathrm{fnd}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\left(\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \:\mathrm{n}!}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$

Answered by Ar Brandon last updated on 13/Aug/20

A_n = ((((2n)!)/(n^n  n!)))^(1/n)   lnA_n =ln ((((2n)!)/(n^n  n!)))^(1/n) =(1/n)[ln(2n)!−ln(n^n )−ln(n!)]              =(1/n)[lnΠ_(k=0) ^(2n−1) (2n−k)−lnΠ_(k=0) ^(n−1) (n−k)]−ln(n)              =(1/n)[Σ_(k=0) ^(2n−1) ln(2n−k)−Σ_(k=0) ^(n−1) ln(n−k)]−ln(n)              =(1/n)[2n∙ln(n)+Σ_(k=0) ^(2n−1) ln(2−(k/n))−n∙ln(n)−Σ_(k=0) ^(n−1) ln(1−(k/n))]−ln(n)  lim_(n→∞) lnA_n =∫_0 ^2 ln(2−x)dx−∫_0 ^1 ln(1−x)dx                       =∫_0 ^2 ln(t_1 )dt_1 −∫_0 ^1 ln(t_2 )dt_2 =[tlnt−t]_1 ^2 =2ln2−1  lim_(n→∞) A_n =e^(2ln2−1) =(4/e)

$$\mathrm{A}_{\mathrm{n}} =\:\left(\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \:\mathrm{n}!}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$$$\mathrm{lnA}_{\mathrm{n}} =\mathrm{ln}\:\left(\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \:\mathrm{n}!}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\frac{\mathrm{1}}{\mathrm{n}}\left[\mathrm{ln}\left(\mathrm{2n}\right)!−\mathrm{ln}\left(\mathrm{n}^{\mathrm{n}} \right)−\mathrm{ln}\left(\mathrm{n}!\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{n}}\left[\mathrm{ln}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}−\mathrm{1}} {\prod}}\left(\mathrm{2n}−\mathrm{k}\right)−\mathrm{ln}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\left(\mathrm{n}−\mathrm{k}\right)\right]−\mathrm{ln}\left(\mathrm{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{n}}\left[\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{2n}−\mathrm{k}\right)−\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{n}−\mathrm{k}\right)\right]−\mathrm{ln}\left(\mathrm{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{n}}\left[\mathrm{2n}\centerdot\mathrm{ln}\left(\mathrm{n}\right)+\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{2}−\frac{\mathrm{k}}{\mathrm{n}}\right)−\mathrm{n}\centerdot\mathrm{ln}\left(\mathrm{n}\right)−\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{k}}{\mathrm{n}}\right)\right]−\mathrm{ln}\left(\mathrm{n}\right) \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}lnA}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{ln}\left(\mathrm{2}−\mathrm{x}\right)\mathrm{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{ln}\left(\mathrm{t}_{\mathrm{1}} \right)\mathrm{dt}_{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{t}_{\mathrm{2}} \right)\mathrm{dt}_{\mathrm{2}} =\left[\mathrm{tlnt}−\mathrm{t}\right]_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2ln2}−\mathrm{1} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}A}_{\mathrm{n}} =\mathrm{e}^{\mathrm{2ln2}−\mathrm{1}} =\frac{\mathrm{4}}{\mathrm{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com