Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 107299 by bobhans last updated on 10/Aug/20

      ✠bobhans✠  find without L′Hopital and series   lim_(x→0)  ((x−sin x)/x^3 ) ?

$$\:\:\:\:\:\:\maltese\mathrm{bobhans}\maltese \\ $$$$\mathrm{find}\:\mathrm{without}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{and}\:\mathrm{series}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:? \\ $$

Answered by john santu last updated on 10/Aug/20

    ⋇JS⋇  okay. let′go  L=lim_(x→0) ((x−sin x)/x^3 ) , let x = 2y  L=lim_(2y→0) ((2y−sin 2y)/(8y^3 )) =lim_(y→0) ((2y−2sin y cos y)/(8y^3 ))  L=(1/4)lim_(y→0) ((y−sin y+sin y−sin y cos y)/y^3 )  4L = lim_(y→0) ((y−sin y)/y^3 )+ lim_(y→0) ((sin y(1−cos y))/y^3 )  4L = L + lim_(x→0) ((2sin^2 ((y/2)))/y^2 )  3L = 2×(1/4) ⇔ L = (1/6).

$$\:\:\:\:\divideontimes\mathrm{JS}\divideontimes \\ $$$$\mathrm{okay}.\:\mathrm{let}'\mathrm{go} \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:,\:\mathrm{let}\:\mathrm{x}\:=\:\mathrm{2y} \\ $$$$\mathrm{L}=\underset{\mathrm{2y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2y}−\mathrm{sin}\:\mathrm{2y}}{\mathrm{8y}^{\mathrm{3}} }\:=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2y}−\mathrm{2sin}\:\mathrm{y}\:\mathrm{cos}\:\mathrm{y}}{\mathrm{8y}^{\mathrm{3}} } \\ $$$$\mathrm{L}=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{y}−\mathrm{sin}\:\mathrm{y}+\mathrm{sin}\:\mathrm{y}−\mathrm{sin}\:\mathrm{y}\:\mathrm{cos}\:\mathrm{y}}{\mathrm{y}^{\mathrm{3}} } \\ $$$$\mathrm{4L}\:=\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{y}−\mathrm{sin}\:\mathrm{y}}{\mathrm{y}^{\mathrm{3}} }+\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{y}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{y}\right)}{\mathrm{y}^{\mathrm{3}} } \\ $$$$\mathrm{4L}\:=\:\mathrm{L}\:+\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{y}}{\mathrm{2}}\right)}{\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{3L}\:=\:\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}\:\Leftrightarrow\:\mathrm{L}\:=\:\frac{\mathrm{1}}{\mathrm{6}}. \\ $$

Commented by bemath last updated on 10/Aug/20

waw...great

$${waw}...{great}\: \\ $$

Commented by bobhans last updated on 10/Aug/20

thAnk you

$$\mathrm{thAnk}\:\mathrm{you} \\ $$

Commented by malwaan last updated on 10/Aug/20

great !

$${great}\:! \\ $$

Answered by $@y@m last updated on 10/Aug/20

Let x=3y    L  =   lim_(x→0)  ((x−sin x)/x^3 )    =   lim_(y→0)     ((3y−sin 3y)/(27y^3 ))    =   lim_(y→0)     ((3y−(3sin y−4sin^3 y))/(27y^3 ))   =    lim_(y→0)     ((3y−3sin y+4sin^3 y)/(27y^3 ))   =   lim_(y→0)     ((3y−3sin y)/(27y^3 ))+(4/(27))(lim_(y→0)  ((sin y)/y))^3    =   (1/9)lim_(y→0)     ((y−sin y)/y^3 )+(4/(27))×1^3   L=(1/9)L+(4/(27))  (8/9)L=(4/(27))  (8/9)L=(4/(27))×(9/8)  L=(1/6)

$${Let}\:{x}=\mathrm{3}{y} \\ $$$$\:\:\mathbb{L}\:\:=\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\: \\ $$$$\:=\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{3}{y}−\mathrm{sin}\:\mathrm{3}{y}}{\mathrm{27}{y}^{\mathrm{3}} } \\ $$$$\:\:=\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{3}{y}−\left(\mathrm{3sin}\:{y}−\mathrm{4sin}\:^{\mathrm{3}} {y}\right)}{\mathrm{27}{y}^{\mathrm{3}} } \\ $$$$\:=\:\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{3}{y}−\mathrm{3sin}\:{y}+\mathrm{4sin}\:^{\mathrm{3}} {y}}{\mathrm{27}{y}^{\mathrm{3}} } \\ $$$$\:=\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{3}{y}−\mathrm{3sin}\:{y}}{\mathrm{27}{y}^{\mathrm{3}} }+\frac{\mathrm{4}}{\mathrm{27}}\left(\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{y}}{{y}}\right)^{\mathrm{3}} \\ $$$$\:=\:\:\:\frac{\mathrm{1}}{\mathrm{9}}\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{{y}−\mathrm{sin}\:{y}}{{y}^{\mathrm{3}} }+\frac{\mathrm{4}}{\mathrm{27}}×\mathrm{1}^{\mathrm{3}} \\ $$$$\mathbb{L}=\frac{\mathrm{1}}{\mathrm{9}}\mathbb{L}+\frac{\mathrm{4}}{\mathrm{27}} \\ $$$$\frac{\mathrm{8}}{\mathrm{9}}\mathbb{L}=\frac{\mathrm{4}}{\mathrm{27}} \\ $$$$\frac{\mathrm{8}}{\mathrm{9}}\mathbb{L}=\frac{\mathrm{4}}{\mathrm{27}}×\frac{\mathrm{9}}{\mathrm{8}} \\ $$$$\mathbb{L}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by bemath last updated on 10/Aug/20

waw...great...too

$${waw}...{great}...{too} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com