Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 107313 by bemath last updated on 10/Aug/20

 { ((x+y(√x) = ((95)/8))),((y+x(√y) = ((93)/8))) :} . Find (√(xy))

{x+yx=958y+xy=938.Findxy

Answered by Her_Majesty last updated on 10/Aug/20

answered  qu 106259

answeredqu106259

Answered by 1549442205PVT last updated on 26/Aug/20

 Set (√x)+(√y)=a,(√(xy)) =b we have  ((√x)−(√y))^2 =((√x)+(√y))^2 −4(√(xy))=a^2 −4b  ⇒(√x)+(√y)=(√(a^2 −4b)). From that we get   { (((√x)=((a+(√(a^2 −4b)))/2))),(((√y)=((a−(√(a^2 −4b)))/2))) :} ⇒ { ((x=((a^2 −2b+a(√(a^2 −4b)))/2))),((y=((a^2 −2b−a(√(a^2 −4b)))/2))) :} (∗)  Substracting two equations we get  x−y+(√(xy))((√y)−(√x))=(1/4)  ⇔a(√(a^2 −4b)) −b(√(a^2 −4b)) =(1/4)  ⇔(a−b)(√(a^2 −4b)) =(1/4)  ⇔(a^2 −2ab+b^2 )(a^2 −4b)=(1/(16))(1)  Adding up two equations we get  x+y+(√(xy)) ((√x) +(√y) )=((47)/2)  ⇔a^2 −2b+ab=((47)/2)⇒b=((2a^2 −47)/(4−2a))(2)  ⇒b^2 =((4a^4 −188a^2 +2209)/(4a^2 −16a+16)).Replace into  (1)we get  [(a^2 −((4a^3 −94a)/(4−2a))+((4a^4 −188a^2 +2209)/(4a^2 −16a+16)).)(a^2 −((8a^2 −188)/(4−2a)))=(1/(16))  ⇒((4a^4 −16a^3 +16a^2 +8a^4 −16a^3 −188a^2 +376a+4a^4 −188a^2 +2209)/(4a^4 −16a+16))×((2a^3 +4a^2 −188)/(2a−4))=(1/(16))  After simple transformations we get  64a^7 −1696a^5 −7392a^4 +23875a^3 +153038a^2 −141376a−830576=0  ⇔(a−4)(64a^6 +256a^5 −672a^4 −10080a^3 −16445a^2 +87258a+207644)=0  ⇒a−4=0⇔a=4  We shall prove that the equation  64a^6 +256a^5 −672a^4 −10080a^3 −16445a^2 +87258a+207644=0  has no positive roots^((•)) (leave later)  Replace into(2)we obtain b=((15)/4)  substituting into (∗) we get  x=((a^2 −2b+a(√(4a^2 −b)))/2)=((25)/4),  y=((a^2 −2b−a(√(4a^2 −b)))/2)=(9/9)  Thus,(√(xy))=b=15/4  Now we need have to prove that the eqn.  64x^6 +256x^5 −672x^4 −10080x^3 −17445x^2 +87258x+207644=0  has no positive roots  Put x=(1/u) then our problem reduce to  Prove that the equation  207644t^6 +87258t^5 −16445t^4 −10080t^3   −672t^2 +256t+64=0 has no positive roots  .Indeed,  Apply Cauchy′s inequality for  positive numbers we have  64000t^6 +64000t^5 +64t≥3^3 (√(64^3 ×10^6 t^(12) ))=19200t^4   Hence,LHS≥143644t^6 +23258t^5 +2755t^4   −10080t^3 −672t^2 +192t+64  We have also  23258t^5 +2755t^4 ≥(√(23258.2755t))

Setx+y=a,xy=bwehave(xy)2=(x+y)24xy=a24bx+y=a24b.Fromthatweget{x=a+a24b2y=aa24b2{x=a22b+aa24b2y=a22baa24b2()Substractingtwoequationswegetxy+xy(yx)=14aa24bba24b=14(ab)a24b=14(a22ab+b2)(a24b)=116(1)Addinguptwoequationswegetx+y+xy(x+y)=472a22b+ab=472b=2a24742a(2)b2=4a4188a2+22094a216a+16.Replaceinto(1)weget[(a24a394a42a+4a4188a2+22094a216a+16.)(a28a218842a)=1164a416a3+16a2+8a416a3188a2+376a+4a4188a2+22094a416a+16×2a3+4a21882a4=116Aftersimpletransformationsweget64a71696a57392a4+23875a3+153038a2141376a830576=0(a4)(64a6+256a5672a410080a316445a2+87258a+207644)=0a4=0a=4Weshallprovethattheequation64a6+256a5672a410080a316445a2+87258a+207644=0hasnopositiveroots()(leavelater)Replaceinto(2)weobtainb=154substitutinginto()wegetx=a22b+a4a2b2=254,y=a22ba4a2b2=99Thus,xy=b=15/4Nowweneedhavetoprovethattheeqn.64x6+256x5672x410080x317445x2+87258x+207644=0hasnopositiverootsPutx=1uthenourproblemreducetoProvethattheequation207644t6+87258t516445t410080t3672t2+256t+64=0hasnopositiveroots.Indeed,ApplyCauchysinequalityforpositivenumberswehave64000t6+64000t5+64t33643×106t12=19200t4Hence,LHS143644t6+23258t5+2755t410080t3672t2+192t+64Wehavealso23258t5+2755t423258.2755t

Terms of Service

Privacy Policy

Contact: info@tinkutara.com