All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 107313 by bemath last updated on 10/Aug/20
{x+yx=958y+xy=938.Findxy
Answered by Her_Majesty last updated on 10/Aug/20
answeredqu106259
Answered by 1549442205PVT last updated on 26/Aug/20
Setx+y=a,xy=bwehave(x−y)2=(x+y)2−4xy=a2−4b⇒x+y=a2−4b.Fromthatweget{x=a+a2−4b2y=a−a2−4b2⇒{x=a2−2b+aa2−4b2y=a2−2b−aa2−4b2(∗)Substractingtwoequationswegetx−y+xy(y−x)=14⇔aa2−4b−ba2−4b=14⇔(a−b)a2−4b=14⇔(a2−2ab+b2)(a2−4b)=116(1)Addinguptwoequationswegetx+y+xy(x+y)=472⇔a2−2b+ab=472⇒b=2a2−474−2a(2)⇒b2=4a4−188a2+22094a2−16a+16.Replaceinto(1)weget[(a2−4a3−94a4−2a+4a4−188a2+22094a2−16a+16.)(a2−8a2−1884−2a)=116⇒4a4−16a3+16a2+8a4−16a3−188a2+376a+4a4−188a2+22094a4−16a+16×2a3+4a2−1882a−4=116Aftersimpletransformationsweget64a7−1696a5−7392a4+23875a3+153038a2−141376a−830576=0⇔(a−4)(64a6+256a5−672a4−10080a3−16445a2+87258a+207644)=0⇒a−4=0⇔a=4Weshallprovethattheequation64a6+256a5−672a4−10080a3−16445a2+87258a+207644=0hasnopositiveroots(∙)(leavelater)Replaceinto(2)weobtainb=154substitutinginto(∗)wegetx=a2−2b+a4a2−b2=254,y=a2−2b−a4a2−b2=99Thus,xy=b=15/4Nowweneedhavetoprovethattheeqn.64x6+256x5−672x4−10080x3−17445x2+87258x+207644=0hasnopositiverootsPutx=1uthenourproblemreducetoProvethattheequation207644t6+87258t5−16445t4−10080t3−672t2+256t+64=0hasnopositiveroots.Indeed,ApplyCauchy′sinequalityforpositivenumberswehave64000t6+64000t5+64t⩾33643×106t12=19200t4Hence,LHS⩾143644t6+23258t5+2755t4−10080t3−672t2+192t+64Wehavealso23258t5+2755t4⩾23258.2755t
Terms of Service
Privacy Policy
Contact: info@tinkutara.com