Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107314 by bemath last updated on 10/Aug/20

        ⌆bemath⌆       ∫_0 ^(2π)  ln (1+sin x) dx ?

$$\:\:\:\:\:\:\:\:\doublebarwedge{bemath}\doublebarwedge \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\:{dx}\:? \\ $$

Answered by mnjuly1970 last updated on 10/Aug/20

Ω=∫_0 ^( 2π) ln(1+sin(x))dx=∫_(−π) ^( π) ln(1−sin(x))dx        2Ω=2∫_0 ^( π)  ln(cos(x))dx⇒Ω=−πln(2)  ...

$$\Omega=\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {ln}\left(\mathrm{1}+{sin}\left({x}\right)\right){dx}=\int_{−\pi} ^{\:\pi} {ln}\left(\mathrm{1}−{sin}\left({x}\right)\right){dx}\:\:\:\:\:\: \\ $$$$\mathrm{2}\Omega=\mathrm{2}\int_{\mathrm{0}} ^{\:\pi} \:{ln}\left({cos}\left({x}\right)\right){dx}\Rightarrow\Omega=−\pi{ln}\left(\mathrm{2}\right)\:\:... \\ $$$$\:\: \\ $$

Commented by bemath last updated on 10/Aug/20

thank you

$${thank}\:{you} \\ $$

Answered by mathmax by abdo last updated on 10/Aug/20

∫_0 ^(2π) ln(1+sinx)dx =∫_0 ^π ln(1+sinx)dx +∫_π ^(2π) ln(1+sinx)dx(→x =π+t)  =∫_0 ^π  ln(1+sinx)dx +∫_0 ^π ln(1−sint)dt =∫_0 ^π ln{(1+sinx)(1−sinx)}dd  =∫_0 ^π ln(1−sin^2 x)dx =∫_0 ^π ln(cos^2 x)dx =2 ∫_0 ^π ln∣cosx∣ dx  =2 ∫_0 ^(π/2) ln(cosx)dx+2∫_(π/2) ^π ln(−cosx)dx but   ∫_0 ^(π/2) ln(cosx)dx =−(π/2)ln(2) and  ∫_(π/2) ^π ln(−cosx)dx =∫_(π/2) ^π ln(cos(π−x))dx =_(π−x=t)    ∫_(π/2) ^0  ln(cost)(−dt)  =∫_0 ^(π/2)  ln(cost)dt =−(π/2)ln(2) ⇒I =−πln(2)−πln(2) ⇒  I =−2πln(2)

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{ln}\left(\mathrm{1}+\mathrm{sinx}\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}+\mathrm{sinx}\right)\mathrm{dx}\:+\int_{\pi} ^{\mathrm{2}\pi} \mathrm{ln}\left(\mathrm{1}+\mathrm{sinx}\right)\mathrm{dx}\left(\rightarrow\mathrm{x}\:=\pi+\mathrm{t}\right) \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{sinx}\right)\mathrm{dx}\:+\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}−\mathrm{sint}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left\{\left(\mathrm{1}+\mathrm{sinx}\right)\left(\mathrm{1}−\mathrm{sinx}\right)\right\}\mathrm{dd} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\mid\mathrm{cosx}\mid\:\mathrm{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}+\mathrm{2}\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{ln}\left(−\mathrm{cosx}\right)\mathrm{dx}\:\mathrm{but}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}\:=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:\mathrm{and} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{ln}\left(−\mathrm{cosx}\right)\mathrm{dx}\:=\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{ln}\left(\mathrm{cos}\left(\pi−\mathrm{x}\right)\right)\mathrm{dx}\:=_{\pi−\mathrm{x}=\mathrm{t}} \:\:\:\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \:\mathrm{ln}\left(\mathrm{cost}\right)\left(−\mathrm{dt}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{cost}\right)\mathrm{dt}\:=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{I}\:=−\pi\mathrm{ln}\left(\mathrm{2}\right)−\pi\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=−\mathrm{2}\pi\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com