Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107328 by mathdave last updated on 10/Aug/20

Commented by mnjuly1970 last updated on 10/Aug/20

Commented by mnjuly1970 last updated on 10/Aug/20

Commented by mathdave last updated on 10/Aug/20

pls hw u got all ds

$${pls}\:{hw}\:{u}\:{got}\:{all}\:{ds} \\ $$

Commented by mathdave last updated on 10/Aug/20

ds is nt actually solve by u

$${ds}\:{is}\:{nt}\:{actually}\:{solve}\:{by}\:{u} \\ $$

Commented by mnjuly1970 last updated on 10/Aug/20

      please: now ,solve it        in your own way!

$$\:\:\:\:\:\:{please}:\:{now}\:,{solve}\:{it} \\ $$$$\:\:\:\:\:\:{in}\:{your}\:{own}\:{way}! \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 10/Aug/20

can you show how you get the value of Σ (((−1)^n )/(2n+1))ln(2n+1)?

$$\mathrm{can}\:\mathrm{you}\:\mathrm{show}\:\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\Sigma\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)? \\ $$

Answered by mathmax by abdo last updated on 10/Aug/20

I =∫_0 ^∞  ((lnx)/(e^x  +e^(−x) )) dx ⇒I =∫_0 ^∞  ((e^(−x) ln(x))/(1+e^(−2x) ))dx  =∫_0 ^∞ e^(−x) ln(x)Σ_(n=0) ^∞  (−1)^n  e^(−2nx) dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞  e^(−(2n+1)x) lnx dx changement (2n+1)x =t give  ∫_0 ^∞  e^(−(2n+1)x) ln(x)dx =∫_0 ^∞  e^(−t) ln((t/(2n+1)))(dt/(2n+1))  =(1/(2n+1))∫_0 ^∞  e^(−t) {ln(t)−ln(2n+1)}dt  =(1/(2n+1))∫_0 ^∞  e^(−t) ln(t)dt−((ln(2n+1))/(2n+1)) ∫_0 ^∞  e^(−t)  dt  =−(γ/(2n+1))−((ln(2n+1))/(2n+1)) ⇒I =−γ Σ_(n=0) ^∞  (((−1)^n )/(2n+1))−Σ_(n=0) ^∞  (((−1)^n ln(2n+1))/(2n+1))  =−((πγ)/4) −Σ_(n=0) ^∞  (((−1)^n )/(2n+1))ln(2n+1) rest to find this sum ...be continued..

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{e}^{\mathrm{x}} \:+\mathrm{e}^{−\mathrm{x}} }\:\mathrm{dx}\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{e}^{−\mathrm{2x}} }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{2nx}} \mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{x}} \mathrm{lnx}\:\mathrm{dx}\:\mathrm{changement}\:\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{x}\:=\mathrm{t}\:\mathrm{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \mathrm{ln}\left(\frac{\mathrm{t}}{\mathrm{2n}+\mathrm{1}}\right)\frac{\mathrm{dt}}{\mathrm{2n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \left\{\mathrm{ln}\left(\mathrm{t}\right)−\mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)\right\}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}−\frac{\mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$=−\frac{\gamma}{\mathrm{2n}+\mathrm{1}}−\frac{\mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2n}+\mathrm{1}}\:\Rightarrow\mathrm{I}\:=−\gamma\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2n}+\mathrm{1}} \\ $$$$=−\frac{\pi\gamma}{\mathrm{4}}\:−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{ln}\left(\mathrm{2n}+\mathrm{1}\right)\:\mathrm{rest}\:\mathrm{to}\:\mathrm{find}\:\mathrm{this}\:\mathrm{sum}\:...\mathrm{be}\:\mathrm{continued}.. \\ $$

Commented by mnjuly1970 last updated on 10/Aug/20

   perfect .mercey

$$\:\:\:{perfect}\:.{mercey} \\ $$

Commented by mathdave last updated on 10/Aug/20

u had really done well ooo well done sir

$${u}\:{had}\:{really}\:{done}\:{well}\:{ooo}\:{well}\:{done}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 10/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com