Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 107498 by Ar Brandon last updated on 11/Aug/20

Show that   Π_(k=1) ^n (a−e^((2ikπ)/n) )(a−e^(−((2ikπ)/n)) )=(a^n −1)^2

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{a}−\mathrm{e}^{\frac{\mathrm{2}{i}\mathrm{k}\pi}{\mathrm{n}}} \right)\left(\mathrm{a}−\mathrm{e}^{−\frac{\mathrm{2}{i}\mathrm{k}\pi}{\mathrm{n}}} \right)=\left(\mathrm{a}^{\mathrm{n}} −\mathrm{1}\right)^{\mathrm{2}} \\ $$

Answered by 1549442205PVT last updated on 11/Aug/20

Consider the equation of degree n:  x^n −1=0(∗)⇔x^n =1⇔x=^n (√1)   =(cos2kπ+isin2kπ)^(1/n) =cos((2kπ)/n)+isin((2kπ)/n)  for k=1,2,...,n.Thus,the equation (∗)  has n roots which each of them be a  n−th root of unit .We denote the that  roots to be δ_1 ,δ_2 ,...,δ_n .In addition,we  see that    α_k =cos((2kπ)/n)−isin((2kπ)/n)(k=1..n^(−) )  are also n different  n−th roots of unit  but α_i and δ_i are two conjugate number  together means α_i δ_i =1and so we have  δ_1 .δ_2 ....δ_n =α_1 .α_2 ....α_n =1.Then we have  Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) ),(e^((2kπi)/n) =cos((2kπ)/n)+isin((2kπ)/n),(e^((−2kπi)/n) =cos((2kπ)/n)−isin((2kπ)/n))  =Π_(k=1) ^(n) (a−δ_k )(a−α_k )=Π_(k=1) ^(n) (a−δ_k )Π_(k=1) ^(n) (a−α_k )  =[a^n −a^(n−1) (Σ_(k=1) ^(n) δ_k )+a^(n−2) (Σ_(i≠j) δ_i δ_j )−...+aΣ_(i_1 ≠i_2 ≠...≠i_(n−1) ) (δ_i_1  δ_i_2  ...δ_i_(n−1)  )−δ_1 δ_2 ..δ_n ]  =(a^n −1)(becau se δ_k (k=1...n^(−) )be n  roots of the equation:x^n −1=0,so all  sums of form Σδ_k ,Σδ_i δ_j ,....Σ(δ_i_1  δ_i_2  ...δ_i_(n−1)  )  equal to zero−Vieta′s theorem)  Similarly,we have  Π_(k=1) ^n (a−α_k )=(a^n −1)  Consequently,Π_(k=1) ^n (a−e^((2kπi)/n) )(a−e^((−2kπi)/n) )  =(a^n −1)^2 (q.e.d)

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{n}: \\ $$$$\mathrm{x}^{\mathrm{n}} −\mathrm{1}=\mathrm{0}\left(\ast\right)\Leftrightarrow\mathrm{x}^{\mathrm{n}} =\mathrm{1}\Leftrightarrow\mathrm{x}=\:^{\mathrm{n}} \sqrt{\mathrm{1}}\: \\ $$$$=\left(\mathrm{cos2k}\pi+\mathrm{isin2k}\pi\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\mathrm{cos}\frac{\mathrm{2k}\pi}{\mathrm{n}}+\mathrm{isin}\frac{\mathrm{2k}\pi}{\mathrm{n}} \\ $$$$\mathrm{for}\:\mathrm{k}=\mathrm{1},\mathrm{2},...,\mathrm{n}.\mathrm{Thus},\mathrm{the}\:\mathrm{equation}\:\left(\ast\right) \\ $$$$\mathrm{has}\:\mathrm{n}\:\mathrm{roots}\:\mathrm{which}\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:\mathrm{be}\:\mathrm{a} \\ $$$$\mathrm{n}−\mathrm{th}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unit}\:.\mathrm{We}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{that} \\ $$$$\mathrm{roots}\:\mathrm{to}\:\mathrm{be}\:\delta_{\mathrm{1}} ,\delta_{\mathrm{2}} ,...,\delta_{\mathrm{n}} .\mathrm{In}\:\mathrm{addition},\mathrm{we} \\ $$$$\mathrm{see}\:\mathrm{that}\:\:\:\:\alpha_{\mathrm{k}} =\mathrm{cos}\frac{\mathrm{2k}\pi}{\mathrm{n}}−\mathrm{isin}\frac{\mathrm{2k}\pi}{\mathrm{n}}\left(\mathrm{k}=\overline {\mathrm{1}..\mathrm{n}}\right) \\ $$$$\mathrm{are}\:\mathrm{also}\:\mathrm{n}\:\mathrm{different}\:\:\mathrm{n}−\mathrm{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unit} \\ $$$$\mathrm{but}\:\alpha_{\mathrm{i}} \mathrm{and}\:\delta_{\mathrm{i}} \mathrm{are}\:\mathrm{two}\:\mathrm{conjugate}\:\mathrm{number} \\ $$$$\mathrm{together}\:\mathrm{means}\:\alpha_{\mathrm{i}} \delta_{\mathrm{i}} =\mathrm{1and}\:\mathrm{so}\:\mathrm{we}\:\mathrm{have} \\ $$$$\delta_{\mathrm{1}} .\delta_{\mathrm{2}} ....\delta_{\mathrm{n}} =\alpha_{\mathrm{1}} .\alpha_{\mathrm{2}} ....\alpha_{\mathrm{n}} =\mathrm{1}.\mathrm{Then}\:\mathrm{we}\:\mathrm{have} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{a}−\mathrm{e}^{\frac{\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} \right)\left(\mathrm{a}−\mathrm{e}^{\frac{−\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} \right),\left(\mathrm{e}^{\frac{\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} =\mathrm{cos}\frac{\mathrm{2k}\pi}{\mathrm{n}}+\mathrm{isin}\frac{\mathrm{2k}\pi}{\mathrm{n}},\left(\mathrm{e}^{\frac{−\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} =\mathrm{cos}\frac{\mathrm{2k}\pi}{\mathrm{n}}−\mathrm{isin}\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)\right. \\ $$$$=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Pi}}\left(\mathrm{a}−\delta_{\mathrm{k}} \right)\left(\mathrm{a}−\alpha_{\mathrm{k}} \right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Pi}}\left(\mathrm{a}−\delta_{\mathrm{k}} \right)\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Pi}}\left(\mathrm{a}−\alpha_{\mathrm{k}} \right) \\ $$$$=\left[\mathrm{a}^{\mathrm{n}} −\mathrm{a}^{\mathrm{n}−\mathrm{1}} \left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\delta_{\mathrm{k}} \right)+\mathrm{a}^{\mathrm{n}−\mathrm{2}} \left(\underset{\mathrm{i}\neq\mathrm{j}} {\Sigma}\delta_{\mathrm{i}} \delta_{\mathrm{j}} \right)−...+\mathrm{a}\underset{\mathrm{i}_{\mathrm{1}} \neq\mathrm{i}_{\mathrm{2}} \neq...\neq\mathrm{i}_{\mathrm{n}−\mathrm{1}} } {\Sigma}\left(\delta_{\mathrm{i}_{\mathrm{1}} } \delta_{\mathrm{i}_{\mathrm{2}} } ...\delta_{\mathrm{i}_{\mathrm{n}−\mathrm{1}} } \right)−\delta_{\mathrm{1}} \delta_{\mathrm{2}} ..\delta_{\mathrm{n}} \right] \\ $$$$=\left(\mathrm{a}^{\mathrm{n}} −\mathrm{1}\right)\left(\mathrm{becau}\:\mathrm{se}\:\delta_{\mathrm{k}} \left(\mathrm{k}=\overline {\mathrm{1}...\mathrm{n}}\right)\mathrm{be}\:\mathrm{n}\right. \\ $$$$\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}:\mathrm{x}^{\mathrm{n}} −\mathrm{1}=\mathrm{0},\mathrm{so}\:\mathrm{all} \\ $$$$\mathrm{sums}\:\mathrm{of}\:\mathrm{form}\:\Sigma\delta_{\mathrm{k}} ,\Sigma\delta_{\mathrm{i}} \delta_{\mathrm{j}} ,....\Sigma\left(\delta_{\mathrm{i}_{\mathrm{1}} } \delta_{\mathrm{i}_{\mathrm{2}} } ...\delta_{\mathrm{i}_{\mathrm{n}−\mathrm{1}} } \right) \\ $$$$\left.\mathrm{equal}\:\mathrm{to}\:\mathrm{zero}−\mathrm{Vieta}'\mathrm{s}\:\mathrm{theorem}\right) \\ $$$$\mathrm{Similarly},\mathrm{we}\:\mathrm{have} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{a}−\alpha_{\mathrm{k}} \right)=\left(\mathrm{a}^{\mathrm{n}} −\mathrm{1}\right) \\ $$$$\mathrm{Consequently},\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{a}−\mathrm{e}^{\frac{\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} \right)\left(\mathrm{a}−\mathrm{e}^{\frac{−\mathrm{2k}\pi\mathrm{i}}{\mathrm{n}}} \right) \\ $$$$=\left(\mathrm{a}^{\mathrm{n}} −\mathrm{1}\right)^{\mathrm{2}} \left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right)\: \\ $$

Commented by Ar Brandon last updated on 11/Aug/20

Thanks so very much Sir �� May I write you in case of any difficulties.��

Commented by 1549442205PVT last updated on 13/Aug/20

Thank you,but only  in public situation  ,Sir

$$\mathrm{Thank}\:\mathrm{you},\mathrm{but}\:\mathrm{only}\:\:\mathrm{in}\:\mathrm{public}\:\mathrm{situation} \\ $$$$,\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com