Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 107533 by Rio Michael last updated on 11/Aug/20

The position  as a function of time x(t) for a particle in  motion is given as  x(t) = (3 m/s^2 )t^2  . Find the velocity  of this particle as a function of time.

$$\mathrm{The}\:\mathrm{position}\:\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}\:{x}\left({t}\right)\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in} \\ $$$$\mathrm{motion}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{particle}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}. \\ $$

Answered by Dwaipayan Shikari last updated on 11/Aug/20

x(t)=3(m/s^2 ).t^2   ((dx(t))/dt)=6t  v(t)=(6(m/s).)t

$${x}\left({t}\right)=\mathrm{3}\frac{{m}}{{s}^{\mathrm{2}} }.{t}^{\mathrm{2}} \\ $$$$\frac{{dx}\left({t}\right)}{{dt}}=\mathrm{6}{t} \\ $$$${v}\left({t}\right)=\left(\mathrm{6}\frac{{m}}{{s}}.\right){t} \\ $$

Answered by Rio Michael last updated on 11/Aug/20

Here is the method i used.   x(t) = (3 m/s^2 )t^2   this is the position of the particle at time t.   in a later time (t + Δt) the position of the particle  is given by x = 3(t + Δt)^2    ⇒ x = 3t^2  + 6tΔt +3(Δt)^2   hence Δx = x_f  −x_i  = 3t^2  + 6tΔt + 3(Δt)^2 −3t^2                                             = 6tΔt + 3(Δt)^2   we define velocity v = lim_(Δt→0)  ((Δx)/(Δt)) =   now ((Δx)/(Δt)) = ((Δt(6t + 3Δt))/(Δt)) = 6t + 3Δt  now v = lim_(Δt→0)  (6t + 3Δt) = 6t

$$\mathrm{Here}\:\mathrm{is}\:\mathrm{the}\:\mathrm{method}\:\mathrm{i}\:\mathrm{used}. \\ $$$$\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\mathrm{time}\:{t}.\: \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{later}\:\mathrm{time}\:\left({t}\:+\:\Delta{t}\right)\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{x}\:=\:\mathrm{3}\left({t}\:+\:\Delta{t}\right)^{\mathrm{2}} \: \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\Delta{t}\:+\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} \\ $$$$\mathrm{hence}\:\Delta{x}\:=\:{x}_{{f}} \:−{x}_{{i}} \:=\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\Delta{t}\:+\:\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} −\mathrm{3}{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{6}{t}\Delta{t}\:+\:\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{define}\:\mathrm{velocity}\:{v}\:=\:\underset{\Delta{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\Delta{x}}{\Delta{t}}\:=\: \\ $$$$\mathrm{now}\:\frac{\Delta{x}}{\Delta{t}}\:=\:\frac{\Delta{t}\left(\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t}\right)}{\Delta{t}}\:=\:\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t} \\ $$$$\mathrm{now}\:{v}\:=\:\underset{\Delta{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t}\right)\:=\:\mathrm{6}{t}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com