Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 107547 by hgrocks last updated on 11/Aug/20

Commented by hgrocks last updated on 11/Aug/20

Can anyone solve this Q without using eigen values

Commented by bemath last updated on 11/Aug/20

tr(M) = trace(M)?

$${tr}\left({M}\right)\:=\:{trace}\left({M}\right)? \\ $$

Commented by hgrocks last updated on 11/Aug/20

Yes it is trace of M

Commented by hgrocks last updated on 11/Aug/20

Pls Solve This Q

$$\mathrm{Pls}\:\mathrm{Solve}\:\mathrm{This}\:\mathrm{Q} \\ $$

Commented by hgrocks last updated on 11/Aug/20

Anyone?

$$\mathrm{Anyone}?\: \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 11/Aug/20

sir dont beg the answer if someone have a idea he give it...

$$\mathrm{sir}\:\mathrm{dont}\:\mathrm{beg}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{if}\:\mathrm{someone}\:\mathrm{have}\:\mathrm{a}\:\mathrm{idea}\:\mathrm{he}\:\mathrm{give}\:\mathrm{it}... \\ $$

Answered by mathmax by abdo last updated on 12/Aug/20

let take a try with this limit let A_n = (((1           (x/n))),((−(x/n)        1)) )  we have A_n =(√(1+(x^2 /n^2 )))× ((((1/(√(1+(x^2 /n^2 ))))                (x/(n(√(1+(x^2 /n^2 ))))))),((−(x/(n(√(1+(x^2 /n^2 )))))              (1/(√(1+(x^2 /n^2 )))))) )  let  α_n (x) =(√(1+(x^2 /n^2 ))) ⇒A_n =α_n (x) ((((1/(α_n (x)))             (x/(nα_n (x))))),((−(x/(nα_n (x)))             (1/(α_n (x))))) )  we have det (((......)),() )=(1/(α_n ^2 (x))) +(x^2 /(n^2 α_n ^2 (x))) =(1/(1+(x^2 /n^2 ))) +(x^2 /(n^2 (1+(x^2 /n^2 ))))  =(n^2 /(n^2  +x^2 )) +(x^2 /(n^2  +x^2 )) =1   let (1/(α_n (x))) =cosα  and (x/(nα_n (x))) =sin(α) ⇒  tanα =(x/n) ⇒ α =arctan((x/n)) ⇒  A_n ^(n/x)  =α_n (x))^(n/x)   × ((( cosα             sinα)),((−sinα            cosα)) )^(n/x)   =(1+(x^2 /n^2 ))^(n/(2x))  × (((cosα             sinα)),((−sinα          cosα)) )^(n/x)    if x divide n we get  A_n ^(n/x)    =(1+(x^2 /n^2 ))^(n/(2x))  (((cos((n/x)arctan((x/n)))              sin((n/x)arctan((x/n))))),((−sin((n/x)arctan((x/n)))          cos((n/x)arctan((x/n))))) )  (1+(x^2 /n^2 ))^(n/(2x))  =e^((n/(2x))ln(1+(x^2 /n^2 )))   ∼e^((n/(2x))((x^2 /n^2 )))  =e^(x/(2n))  →1  also (n/x)arctan((x/n))  ∼(n/x).(x/n) =1 ⇒lim_(n→+∞)  A_n ^(n/x)   = (((cos(1)          sin(1))),((−sin(1)         cos(1))) )  and Tr(lim_(n→+∞) A_n ^(n/x) ) =2cos(1)  if n integr and x dont divide  n   n =qx +p with 0<p<x  be continued...

$$\mathrm{let}\:\mathrm{take}\:\mathrm{a}\:\mathrm{try}\:\mathrm{with}\:\mathrm{this}\:\mathrm{limit}\:\mathrm{let}\:\mathrm{A}_{\mathrm{n}} =\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{n}}}\\{−\frac{\mathrm{x}}{\mathrm{n}}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{A}_{\mathrm{n}} =\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}×\begin{pmatrix}{\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{n}\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}}}\\{−\frac{\mathrm{x}}{\mathrm{n}\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}}}\end{pmatrix} \\ $$$$\mathrm{let}\:\:\alpha_{\mathrm{n}} \left(\mathrm{x}\right)\:=\sqrt{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}\:\Rightarrow\mathrm{A}_{\mathrm{n}} =\alpha_{\mathrm{n}} \left(\mathrm{x}\right)\begin{pmatrix}{\frac{\mathrm{1}}{\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{n}\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}}\\{−\frac{\mathrm{x}}{\mathrm{n}\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}}\end{pmatrix} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{det}\begin{pmatrix}{......}\\{}\end{pmatrix}=\frac{\mathrm{1}}{\alpha_{\mathrm{n}} ^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} \alpha_{\mathrm{n}} ^{\mathrm{2}} \left(\mathrm{x}\right)}\:=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }}\:+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)} \\ $$$$=\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} }\:+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} }\:=\mathrm{1}\:\:\:\mathrm{let}\:\frac{\mathrm{1}}{\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}\:=\mathrm{cos}\alpha\:\:\mathrm{and}\:\frac{\mathrm{x}}{\mathrm{n}\alpha_{\mathrm{n}} \left(\mathrm{x}\right)}\:=\mathrm{sin}\left(\alpha\right)\:\Rightarrow \\ $$$$\mathrm{tan}\alpha\:=\frac{\mathrm{x}}{\mathrm{n}}\:\Rightarrow\:\alpha\:=\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right)\:\Rightarrow \\ $$$$\left.\mathrm{A}_{\mathrm{n}} ^{\frac{\mathrm{n}}{\mathrm{x}}} \:=\alpha_{\mathrm{n}} \left(\mathrm{x}\right)\right)^{\frac{\mathrm{n}}{\mathrm{x}}} \:\:×\begin{pmatrix}{\:\mathrm{cos}\alpha\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\alpha}\\{−\mathrm{sin}\alpha\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\alpha}\end{pmatrix}^{\frac{\mathrm{n}}{\mathrm{x}}} \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{n}}{\mathrm{2x}}} \:×\begin{pmatrix}{\mathrm{cos}\alpha\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\alpha}\\{−\mathrm{sin}\alpha\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\alpha}\end{pmatrix}^{\frac{\mathrm{n}}{\mathrm{x}}} \:\:\:\mathrm{if}\:\mathrm{x}\:\mathrm{divide}\:\mathrm{n}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{A}_{\mathrm{n}} ^{\frac{\mathrm{n}}{\mathrm{x}}} \:\:\:=\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{n}}{\mathrm{2x}}} \begin{pmatrix}{\mathrm{cos}\left(\frac{\mathrm{n}}{\mathrm{x}}\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right)\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\left(\frac{\mathrm{n}}{\mathrm{x}}\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right)\right)}\\{−\mathrm{sin}\left(\frac{\mathrm{n}}{\mathrm{x}}\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right)\right)\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\left(\frac{\mathrm{n}}{\mathrm{x}}\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right)\right)}\end{pmatrix} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{n}}{\mathrm{2x}}} \:=\mathrm{e}^{\frac{\mathrm{n}}{\mathrm{2x}}\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)} \:\:\sim\mathrm{e}^{\frac{\mathrm{n}}{\mathrm{2x}}\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }\right)} \:=\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{2n}}} \:\rightarrow\mathrm{1}\:\:\mathrm{also}\:\frac{\mathrm{n}}{\mathrm{x}}\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{n}}\right) \\ $$$$\sim\frac{\mathrm{n}}{\mathrm{x}}.\frac{\mathrm{x}}{\mathrm{n}}\:=\mathrm{1}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}_{\mathrm{n}} ^{\frac{\mathrm{n}}{\mathrm{x}}} \:\:=\begin{pmatrix}{\mathrm{cos}\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\left(\mathrm{1}\right)}\\{−\mathrm{sin}\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\mathrm{cos}\left(\mathrm{1}\right)}\end{pmatrix} \\ $$$$\mathrm{and}\:\mathrm{Tr}\left(\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{A}_{\mathrm{n}} ^{\frac{\mathrm{n}}{\mathrm{x}}} \right)\:=\mathrm{2cos}\left(\mathrm{1}\right) \\ $$$$\mathrm{if}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{and}\:\mathrm{x}\:\mathrm{dont}\:\mathrm{divide}\:\:\mathrm{n}\:\:\:\mathrm{n}\:=\mathrm{qx}\:+\mathrm{p}\:\mathrm{with}\:\mathrm{0}<\mathrm{p}<\mathrm{x} \\ $$$$\mathrm{be}\:\mathrm{continued}... \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com