Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 107550 by ajfour last updated on 11/Aug/20

L=lim_(x→0)  (2^(x−1) +(1/2))^(1/x)   = ?

$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{2}^{{x}−\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{1}/{x}} \:\:=\:? \\ $$

Answered by hgrocks last updated on 11/Aug/20

Commented by ajfour last updated on 11/Aug/20

Good, thanks Sir.

$${Good},\:{thanks}\:{Sir}. \\ $$

Answered by john santu last updated on 11/Aug/20

         ⋇JS⋇  L = lim_(x→0) ((1/2).2^x +(1/2))^(1/x)   L=lim_(x→0) (2^(x−1)  (1+(1/2^x )))^(1/x)   ln L=lim_(x→0) ((ln (2^(x−1) )+ln (1+2^(−x) ))/x)  ln L=lim_(x→0) ((2^(x−1)  ln (2))/2^(x−1) )−((2^(−x)  ln (2))/(1+2^(−x) ))  ln L=(((1/2)ln (2))/(1/2))−((ln (2))/2) = (1/2)ln (2)=ln ((√2))  L= (√2)

$$\:\:\:\:\:\:\:\:\:\divideontimes\mathcal{JS}\divideontimes \\ $$$$\mathcal{L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}^{{x}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathcal{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{2}^{{x}−\mathrm{1}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\right)\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathrm{ln}\:\mathcal{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:\left(\mathrm{2}^{{x}−\mathrm{1}} \right)+\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}^{−{x}} \right)}{{x}} \\ $$$$\mathrm{ln}\:\mathcal{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}−\mathrm{1}} \:\mathrm{ln}\:\left(\mathrm{2}\right)}{\mathrm{2}^{{x}−\mathrm{1}} }−\frac{\mathrm{2}^{−{x}} \:\mathrm{ln}\:\left(\mathrm{2}\right)}{\mathrm{1}+\mathrm{2}^{−{x}} } \\ $$$$\mathrm{ln}\:\mathcal{L}=\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{2}\right)}{\frac{\mathrm{1}}{\mathrm{2}}}−\frac{\mathrm{ln}\:\left(\mathrm{2}\right)}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{2}\right)=\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\right) \\ $$$$\mathcal{L}=\:\sqrt{\mathrm{2}} \\ $$

Commented by ajfour last updated on 11/Aug/20

Thanks JS , but it seems bit cumbersome,  dont mind..

$${Thanks}\:{JS}\:,\:{but}\:{it}\:{seems}\:{bit}\:{cumbersome}, \\ $$$${dont}\:{mind}.. \\ $$

Commented by john santu last updated on 11/Aug/20

no problem. up to you

Answered by Dwaipayan Shikari last updated on 11/Aug/20

lim_(x→0) (1/x)log(1+2^(x−1) −(1/2))=logy  (1/x).(2^(x−1) −(1/2))=logy  (1/2).((2^x −1)/x)=logy  ((log(2))/2)=logy  y=(√2)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}{log}\left(\mathrm{1}+\mathrm{2}^{{x}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\right)={logy} \\ $$$$\frac{\mathrm{1}}{{x}}.\left(\mathrm{2}^{{x}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\right)={logy} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{2}^{{x}} −\mathrm{1}}{{x}}={logy} \\ $$$$\frac{{log}\left(\mathrm{2}\right)}{\mathrm{2}}={logy} \\ $$$${y}=\sqrt{\mathrm{2}} \\ $$

Commented by ajfour last updated on 11/Aug/20

Quite nice, thanks!

$${Quite}\:{nice},\:{thanks}! \\ $$

Answered by ajfour last updated on 11/Aug/20

L=lim_(x→0) (1+((2^x −1)/x).(x/2))^(1/x)      = lim_(x→0) {(1+(x/2)ln 2)^(2/(xln 2)) }^((ln 2)/2)    L =e^(ln (√2))  = (√2) .

$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{2}^{{x}} −\mathrm{1}}{{x}}.\frac{{x}}{\mathrm{2}}\right)^{\mathrm{1}/{x}} \\ $$$$\:\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)^{\frac{\mathrm{2}}{{x}\mathrm{ln}\:\mathrm{2}}} \right\}^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} \\ $$$$\:{L}\:={e}^{\mathrm{ln}\:\sqrt{\mathrm{2}}} \:=\:\sqrt{\mathrm{2}}\:. \\ $$

Answered by mathmax by abdo last updated on 11/Aug/20

f(x)=(2^(x−1)  +(1/2))^(1/x)  ⇒f(x) =e^((1/x)ln(2^(x−1)  +(1/2))) we have  2^(x−1)  =e^((x−1)ln(2))  =e^(−ln(2)) .e^(xln(2) ) ∼e^(−ln(2)) {1+xln(2)}=(1/2)(1+xln(2))  ⇒2^(x−1)  +(1/2)∼1+x((ln(2))/2) ⇒ln(2^(x−1)  +(1/2))∼ln(1+xln(2))∼(x/2)ln(2) ⇒  (1/x)ln(2^(x−1)  +(1/2))∼(1/2)ln(2) =ln((√2)) ⇒lim_(x→0^+ )   f(x) =(√2)

$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}\mathrm{ln}\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)} \mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:=\mathrm{e}^{\left(\mathrm{x}−\mathrm{1}\right)\mathrm{ln}\left(\mathrm{2}\right)} \:=\mathrm{e}^{−\mathrm{ln}\left(\mathrm{2}\right)} .\mathrm{e}^{\mathrm{xln}\left(\mathrm{2}\right)\:} \sim\mathrm{e}^{−\mathrm{ln}\left(\mathrm{2}\right)} \left\{\mathrm{1}+\mathrm{xln}\left(\mathrm{2}\right)\right\}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{xln}\left(\mathrm{2}\right)\right) \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{2}}\sim\mathrm{1}+\mathrm{x}\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:\Rightarrow\mathrm{ln}\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)\sim\mathrm{ln}\left(\mathrm{1}+\mathrm{xln}\left(\mathrm{2}\right)\right)\sim\frac{\mathrm{x}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}\mathrm{ln}\left(\mathrm{2}^{\mathrm{x}−\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)\sim\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\:=\mathrm{ln}\left(\sqrt{\mathrm{2}}\right)\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com