Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 107747 by ajfour last updated on 12/Aug/20

L=lim_(x→0) (((1−cos xcos 2xcos 3x)/(sin^2 2x))) = ?

$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\right)\:=\:? \\ $$

Answered by bobhans last updated on 12/Aug/20

        ((Bobhans)/Π)  L=lim_(x→0) (((1−(1−(x^2 /2))(1−2x^2 )(1−((9x^2 )/2)))/(4x^2 )))  L=lim_(x→0) (((1−(1−(5/2)x^2 +x^4 )(1−(9/2)x^2 ))/(4x^2 )))  L=lim_(x→0) (((1−(1−7x^2 +((45)/4)x^4 −(9/2)x^4 ))/(4x^2 )))=(7/4)

$$\:\:\:\:\:\:\:\:\frac{\mathcal{B}\mathrm{obhans}}{\Pi} \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\mathrm{1}−\mathrm{2x}^{\mathrm{2}} \right)\left(\mathrm{1}−\frac{\mathrm{9x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\mathrm{4x}^{\mathrm{2}} }\right) \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \right)\left(\mathrm{1}−\frac{\mathrm{9}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{4x}^{\mathrm{2}} }\right) \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}−\left(\mathrm{1}−\mathrm{7x}^{\mathrm{2}} +\frac{\mathrm{45}}{\mathrm{4}}\mathrm{x}^{\mathrm{4}} −\frac{\mathrm{9}}{\mathrm{2}}\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{4x}^{\mathrm{2}} }\right)=\frac{\mathrm{7}}{\mathrm{4}} \\ $$

Commented by ajfour last updated on 12/Aug/20

Thanks Sir, most convinient way  this is..

$${Thanks}\:{Sir},\:{most}\:{convinient}\:{way} \\ $$$${this}\:{is}.. \\ $$

Commented by malwaan last updated on 12/Aug/20

Sir Bobhans  you can delet x^4  terms because  we need only x^2  so  L=lim_(x→0) (((1−(1−7x^2 +...))/(4x^2 )))=(7/4)  thank you Sir

$${Sir}\:{Bobhans} \\ $$$${you}\:{can}\:{delet}\:{x}^{\mathrm{4}} \:{terms}\:{because} \\ $$$${we}\:{need}\:{only}\:{x}^{\mathrm{2}} \:{so} \\ $$$$\mathrm{L}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}−\left(\mathrm{1}−\mathrm{7x}^{\mathrm{2}} +...\right)}{\mathrm{4x}^{\mathrm{2}} }\right)=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$${thank}\:{you}\:{Sir} \\ $$

Answered by john santu last updated on 12/Aug/20

      ((⋇JS⋇)/Σ)  in generrally    lim_(x→0)  ((1−cos px cos qx cos rx cos tx)/(sin^2 ax))  = (((1/2)(p^2 +q^2 +r^2 +t^2 ))/a^2 )  now lim_(x→0) ((1−cos x cos 2x cos 3x)/(sin^2 2x))=  (((1/2)(1+4+9))/4) = (((1/2).14)/4) = (7/4)

$$\:\:\:\:\:\:\frac{\divideontimes\mathcal{JS}\divideontimes}{\Sigma} \\ $$$${in}\:{generrally}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{px}\:\mathrm{cos}\:{qx}\:\mathrm{cos}\:{rx}\:\mathrm{cos}\:{tx}}{\mathrm{sin}\:^{\mathrm{2}} {ax}} \\ $$$$=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} } \\ $$$${now}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}= \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{4}+\mathrm{9}\right)}{\mathrm{4}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{14}}{\mathrm{4}}\:=\:\frac{\mathrm{7}}{\mathrm{4}} \\ $$

Commented by bemath last updated on 12/Aug/20

joss

$${joss} \\ $$

Commented by ajfour last updated on 12/Aug/20

Thanks for the general formula,  can i please have a proof of it..

$${Thanks}\:{for}\:{the}\:{general}\:{formula}, \\ $$$${can}\:{i}\:{please}\:{have}\:{a}\:{proof}\:{of}\:{it}.. \\ $$

Commented by malwaan last updated on 12/Aug/20

Sir John santu  is this right  lim_(x→0)  ((1−cos a_1 x  cos a_2 x....cos a_n x)/(sin^2  bx))  = (((1/2)(a_1 ^2  + a_2 ^2  + ... + a_n ^2 ))/b^2 )  n ≥ 1  thank you so much

$${Sir}\:{John}\:{santu} \\ $$$${is}\:{this}\:{right} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{1}−{cos}\:{a}_{\mathrm{1}} {x}\:\:{cos}\:{a}_{\mathrm{2}} {x}....{cos}\:{a}_{{n}} {x}}{{sin}^{\mathrm{2}} \:{bx}} \\ $$$$=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({a}_{\mathrm{1}} ^{\mathrm{2}} \:+\:{a}_{\mathrm{2}} ^{\mathrm{2}} \:+\:...\:+\:{a}_{{n}} ^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} } \\ $$$${n}\:\geqslant\:\mathrm{1} \\ $$$${thank}\:{you}\:{so}\:{much} \\ $$

Answered by mathmax by abdo last updated on 12/Aug/20

let f(x) =((1−cosx cos(2x)cos(3x))/(sin^2 (2x)))  we hsve  cosx cos(2x)cos(3x) =(1/2)(cos(3x)+cos(x)cos(3x)  =(1/2)cos^2 (3x) +(1/4)(cos(4x) +cos(2x))  =(1/4)(1+cos(6x)+cos(4x)+cos(2x)) ∼  (1/4)(1+1−(((6x)^2 )/2) +1−(((4x)^2 )/2) +1−(((2x)^2 )/2))  =(1/4)(4 −18x^2 −8x^2 −2x^2 ) =(1/4)(4−28x^2 )=1−7x^2   sin^2 (2x) =((1−cos(4x))/2) =(1/2)−(1/2)cos(4x)∼(1/2)−(1/2)(1−(((4x)^2 )/2))  =4x^2   and 1−cosx cos(2x)cos(3x) ∼ 7x^2  ⇒  f(x)∼((7x^2 )/(4x^2 )) =(7/4) ⇒lim_(x→0) f(x) =(7/4)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}−\mathrm{cosx}\:\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{cos}\left(\mathrm{3x}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)}\:\:\mathrm{we}\:\mathrm{hsve} \\ $$$$\mathrm{cosx}\:\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{cos}\left(\mathrm{3x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\left(\mathrm{3x}\right)+\mathrm{cos}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{3x}\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \left(\mathrm{3x}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{cos}\left(\mathrm{4x}\right)\:+\mathrm{cos}\left(\mathrm{2x}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{cos}\left(\mathrm{6x}\right)+\mathrm{cos}\left(\mathrm{4x}\right)+\mathrm{cos}\left(\mathrm{2x}\right)\right)\:\sim \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{1}−\frac{\left(\mathrm{6x}\right)^{\mathrm{2}} }{\mathrm{2}}\:+\mathrm{1}−\frac{\left(\mathrm{4x}\right)^{\mathrm{2}} }{\mathrm{2}}\:+\mathrm{1}−\frac{\left(\mathrm{2x}\right)^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{4}\:−\mathrm{18x}^{\mathrm{2}} −\mathrm{8x}^{\mathrm{2}} −\mathrm{2x}^{\mathrm{2}} \right)\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{4}−\mathrm{28x}^{\mathrm{2}} \right)=\mathrm{1}−\mathrm{7x}^{\mathrm{2}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)\:=\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{4x}\right)}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\left(\mathrm{4x}\right)\sim\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\left(\mathrm{4x}\right)^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$=\mathrm{4x}^{\mathrm{2}} \:\:\mathrm{and}\:\mathrm{1}−\mathrm{cosx}\:\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{cos}\left(\mathrm{3x}\right)\:\sim\:\mathrm{7x}^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{7x}^{\mathrm{2}} }{\mathrm{4x}^{\mathrm{2}} }\:=\frac{\mathrm{7}}{\mathrm{4}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com