Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 107995 by Ar Brandon last updated on 13/Aug/20

Solve the differential equation;  x′′(t)+2x′(t)+x(t)=1+t  (using the method of variation of parameters)

Solvethedifferentialequation;x(t)+2x(t)+x(t)=1+t(usingthemethodofvariationofparameters)

Answered by Ar Brandon last updated on 13/Aug/20

x_(GH) : r^2 +2r+1=0 , (r+1)^2 =0, r_1 =−1=r_2   ⇒x_(GH) =(At+B)e^(−t) =Ate^(−t) +Be^(−t)   By varying the parameters,   Let x_P =A(t)te^(−t) +B(t)e^(−t)    { ((A′(t)(te^(−t) )+B′(t)(e^(−t) )=0),(eqn(1))),((A′(t)(te^(−t) )′+B′(t)(e^(−t) )′=1+t),(eqn(2))) :}  eqn(2)⇒A′(t)(e^(−t) −te^(−t) )−B′(t)(e^(−t) )=1+t  ⇒−[A′(t)(te^(−t) )+B′(t)e^(−t) ]+A′(t)e^(−t) =1+t⇒A′(t)=e^t +te^t   ⇒A(t)=∫(1+t)e^t dt=(1+t)e^t −e^t +k=te^t +k  A(t) in eqn(1)⇒B′(t)=−A′(t)t⇒B(t)=−∫A′(t)tdt  ⇒−B(t)=t∫A′(t)dt−∫{(dt/dt)∫A′(t)dt}dt  ⇒B(t)=−t(te^t +k)+∫(te^t +k)dt  ⇒B(t)=−t(te^t +k)+[te^t −e^t ]+kt+c  ⇒B(t)=−t^2 e^t +te^t −e^t +c  ⇒x_P =(te^t +k)te^(−t) +(−t^2 e^t +te^t −e^t +c)e^(−t)   ⇒x_P =t^2 +kte^(−t) −t^2 +t−1+ce^(−t) =t−1+(kt+c)e^(−t)   ⇒x_G =(At+B)e^(−t) +t−1+(kt+c)e^(−t)   ⇒x_G =(αt+β)e^(−t) +t−1 , α=A+k , β=B+c

xGH:r2+2r+1=0,(r+1)2=0,r1=1=r2xGH=(At+B)et=Atet+BetByvaryingtheparameters,LetxP=A(t)tet+B(t)et{A(t)(tet)+B(t)(et)=0eqn(1)A(t)(tet)+B(t)(et)=1+teqn(2)eqn(2)A(t)(ettet)B(t)(et)=1+t[A(t)(tet)+B(t)et]+A(t)et=1+tA(t)=et+tetA(t)=(1+t)etdt=(1+t)etet+k=tet+kA(t)ineqn(1)B(t)=A(t)tB(t)=A(t)tdtB(t)=tA(t)dt{dtdtA(t)dt}dtB(t)=t(tet+k)+(tet+k)dtB(t)=t(tet+k)+[tetet]+kt+cB(t)=t2et+tetet+cxP=(tet+k)tet+(t2et+tetet+c)etxP=t2+ktett2+t1+cet=t1+(kt+c)etxG=(At+B)et+t1+(kt+c)etxG=(αt+β)et+t1,α=A+k,β=B+c

Answered by Aziztisffola last updated on 13/Aug/20

x′′(t)+2x′(t)+x(t)=0 ⇒r^2 +2r+1=0   (r+1)^2 =0 ⇒r=−1  x_h (t)=(αt+β)e^(−t) =αte^(−t) +βe^(−t)   x_p (t)=u_1 te^(−t) +u_2 e^(−t)   w= determinant (((te^(−t) ),e^(−t) ),(((1−t)e^(−t) ),(−e^(−t) )))=−te^(−2t) −(1−t)e^(−2t)   =(−t−1+t)e^(−2t) =−e^(−2t)    w_1 = determinant ((0,e^(−t) ),((1+t),(−e^(−t) )))=−e^(−t) (1+t)   w_2 = determinant (((te^(−t) ),0),(((1−t)e^(−t) ),(1+t)))=(1+t)te^(−t)    u_1 =∫(w_1 /w)dt=∫(1+t)e^t dt   u_2 =∫(w_2 /w)dt=−∫(1+t)te^t dt   x_p (t)=te^(−t) ∫(1+t)e^t dt−e^(−t) ∫(1+t)te^t dt   x(t)=x_h (t)+x_p (t)

x(t)+2x(t)+x(t)=0r2+2r+1=0(r+1)2=0r=1xh(t)=(αt+β)et=αtet+βetxp(t)=u1tet+u2etw=|tetet(1t)etet|=te2t(1t)e2t=(t1+t)e2t=e2tw1=|0et1+tet|=et(1+t)w2=|tet0(1t)et1+t|=(1+t)tetu1=w1wdt=(1+t)etdtu2=w2wdt=(1+t)tetdtxp(t)=tet(1+t)etdtet(1+t)tetdtx(t)=xh(t)+xp(t)

Commented by Ar Brandon last updated on 13/Aug/20

Thanks

Answered by mathmax by abdo last updated on 14/Aug/20

laplace method   e ⇒L(y^(′′) )+2L(y^′ )+L(y) =L(1+t) ⇒  t^2 L(y)−ty(o)−y^′ (0)+2(t L(y)−y(0))+L(y) =L(1+t)  ⇒(t^2 +2t +1)L(y) =ty(o)+2y(o)+y^′ (0)+L(1+t) ⇒  (t^2  +2t+1)L(y) =(t+2)y(o) +y^′ (0) +L(1+t) but  L(1+t) =∫_0 ^∞  (1+x)e^(−tx) dx  =∫_0 ^∞  e^(−tx) dx+∫_0 ^∞  xe^(−tx) dx  =[−(1/t)e^(−tx) ]_(x=0) ^∞  +[−(x/t)e^(−tx) ]_(x=0) ^∞ +(1/t)∫_0 ^∞   e^(−tx) dx  =(1/t) +(1/t)[−(1/t)e^(−tx) ]_(x=0) ^∞  =(1/t)+(1/t^2 )  e ⇒(t^2  +2t+1)L(y)=y(0)(t+2)+y^′ (0)+(1/t)+(1/t^2 ) ⇒  ⇒L(y) =y(0).((t+2)/((t+1)^2 )) +y^′ (0)(1/((t+1)^2 )) +(1/(t(t+1)^2 )) +(1/(t^2 (t+1)^2 )) ⇒  y(t) =y(0)L^(−1) (((t+2)/((t+2)^2 )))+y^′ (0)L^(−1) ((1/((t+1)^2 )))+L^(−1) ((1/(t(t+1)^2 )))  +L^(−1) ((1/(t^2 (t+1)^2 ))) rest decompisition ...be continued...

laplacemethodeL(y)+2L(y)+L(y)=L(1+t)t2L(y)ty(o)y(0)+2(tL(y)y(0))+L(y)=L(1+t)(t2+2t+1)L(y)=ty(o)+2y(o)+y(0)+L(1+t)(t2+2t+1)L(y)=(t+2)y(o)+y(0)+L(1+t)butL(1+t)=0(1+x)etxdx=0etxdx+0xetxdx=[1tetx]x=0+[xtetx]x=0+1t0etxdx=1t+1t[1tetx]x=0=1t+1t2e(t2+2t+1)L(y)=y(0)(t+2)+y(0)+1t+1t2L(y)=y(0).t+2(t+1)2+y(0)1(t+1)2+1t(t+1)2+1t2(t+1)2y(t)=y(0)L1(t+2(t+2)2)+y(0)L1(1(t+1)2)+L1(1t(t+1)2)+L1(1t2(t+1)2)restdecompisition...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com