Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 108067 by I want to learn more last updated on 14/Aug/20

Answered by 1549442205PVT last updated on 14/Aug/20

Commented by 1549442205PVT last updated on 14/Aug/20

BD=2a,CD=3a,CE=12,AE=6,AF=3  BF=x?  First we  prove following Xeva′s therem  “Given the triangle ABC and D,E,F  are three points lying on the sides BC  AC and AB respectively.Then three  lines AD,BE and CF are concurren at  a point G if and only if ((BD)/(DC)).((CE)/(EA)).((AF)/(FB))=1(∗)”  i)Let AD,BE,CF are omcurrent at G  we need to prove the equality (∗)  Indeed,we have ((BD)/(DC))=(S_(ABD) /S_(ACD) )=(S_(GBD) /S_(GCD) )=  =((S_(ABD) −S_(GBD) )/(S_(ACD) −S_(GCD) ))=(S_(AGB) /S_(AGC) )(1).Similarly,we  have also ((CE)/(EA))=(S_(BGC) /S_(BGA) ) (2),((AF)/(FB))=(S_(AGC) /S_(BGC) )(3)  Multiplying three above equalities   together we obtain  ((BD)/(DC)).((CE)/(EA)).((AF)/(FB))=(S_(AGB) /S_(AGC) )×(S_(BGC) /S_(BGA) ) ×(S_(AGC) /S_(BGC) )=1(q.e.d)  Now suppose had the equality (∗) we  prove AD,BE,CF are concurrent.Indeed,  denote by G the intersection point  of BE and CF.Let the ray AG meet BC  at the point D′.Then by above result  we get ((BD′)/(D′C)).((CE)/(.EA)).((AF)/(FB))=1.Then combining  to (∗) we get ((BD′)/(D′C))=((BD)/(DC))⇔((BD′)/(BC))=((BD)/(BC))  ⇒D′≡D⇒AD  which shows that AD,  BE and CF are concurrent at G(q.e.d)  Now  applying Xeva′s theorem on the  given problem we get  ((BD)/(DC)).((CE)/(EA)).((AF)/(FB))=1⇔((2a)/(3a)).((12)/6).(3/x)=1⇒((72a)/(18ax))=1  ⇒x=4

$$\mathrm{BD}=\mathrm{2a},\mathrm{CD}=\mathrm{3a},\mathrm{CE}=\mathrm{12},\mathrm{AE}=\mathrm{6},\mathrm{AF}=\mathrm{3} \\ $$$$\mathrm{BF}=\mathrm{x}? \\ $$$$\mathrm{First}\:\mathrm{we}\:\:\mathrm{prove}\:\mathrm{following}\:\mathrm{Xeva}'\mathrm{s}\:\mathrm{therem} \\ $$$$``\mathrm{Given}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{and}\:\mathrm{D},\mathrm{E},\mathrm{F} \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points}\:\mathrm{lying}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{BC} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{respectively}.\mathrm{Then}\:\mathrm{three} \\ $$$$\mathrm{lines}\:\mathrm{AD},\mathrm{BE}\:\mathrm{and}\:\mathrm{CF}\:\mathrm{are}\:\mathrm{concurren}\:\mathrm{at} \\ $$$$\mathrm{a}\:\mathrm{point}\:\mathrm{G}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\frac{\mathrm{BD}}{\mathrm{DC}}.\frac{\mathrm{CE}}{\mathrm{EA}}.\frac{\mathrm{AF}}{\mathrm{FB}}=\mathrm{1}\left(\ast\right)'' \\ $$$$\left.\mathrm{i}\right)\mathrm{Let}\:\mathrm{AD},\mathrm{BE},\mathrm{CF}\:\mathrm{are}\:\mathrm{omcurrent}\:\mathrm{at}\:\mathrm{G} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{equality}\:\left(\ast\right) \\ $$$$\mathrm{Indeed},\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{S}_{\mathrm{ABD}} }{\mathrm{S}_{\mathrm{ACD}} }=\frac{\mathrm{S}_{\mathrm{GBD}} }{\mathrm{S}_{\mathrm{GCD}} }= \\ $$$$=\frac{\mathrm{S}_{\mathrm{ABD}} −\mathrm{S}_{\mathrm{GBD}} }{\mathrm{S}_{\mathrm{ACD}} −\mathrm{S}_{\mathrm{GCD}} }=\frac{\mathrm{S}_{\mathrm{AGB}} }{\mathrm{S}_{\mathrm{AGC}} }\left(\mathrm{1}\right).\mathrm{Similarly},\mathrm{we} \\ $$$$\mathrm{have}\:\mathrm{also}\:\frac{\mathrm{CE}}{\mathrm{EA}}=\frac{\mathrm{S}_{\mathrm{BGC}} }{\mathrm{S}_{\mathrm{BGA}} }\:\left(\mathrm{2}\right),\frac{\mathrm{AF}}{\mathrm{FB}}=\frac{\mathrm{S}_{\mathrm{AGC}} }{\mathrm{S}_{\mathrm{BGC}} }\left(\mathrm{3}\right) \\ $$$$\mathrm{Multiplying}\:\mathrm{three}\:\mathrm{above}\:\mathrm{equalities}\: \\ $$$$\mathrm{together}\:\mathrm{we}\:\mathrm{obtain} \\ $$$$\frac{\mathrm{BD}}{\mathrm{DC}}.\frac{\mathrm{CE}}{\mathrm{EA}}.\frac{\mathrm{AF}}{\mathrm{FB}}=\frac{\mathrm{S}_{\mathrm{AGB}} }{\mathrm{S}_{\mathrm{AGC}} }×\frac{\mathrm{S}_{\mathrm{BGC}} }{\mathrm{S}_{\mathrm{BGA}} }\:×\frac{\mathrm{S}_{\mathrm{AGC}} }{\mathrm{S}_{\mathrm{BGC}} }=\mathrm{1}\left(\mathrm{q}.\mathrm{e}.\mathrm{d}\right) \\ $$$$\mathrm{Now}\:\mathrm{suppose}\:\mathrm{had}\:\mathrm{the}\:\mathrm{equality}\:\left(\ast\right)\:\mathrm{we} \\ $$$$\mathrm{prove}\:\mathrm{AD},\mathrm{BE},\mathrm{CF}\:\mathrm{are}\:\mathrm{concurrent}.\mathrm{Indeed}, \\ $$$$\mathrm{denote}\:\mathrm{by}\:\mathrm{G}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{point} \\ $$$$\mathrm{of}\:\mathrm{BE}\:\mathrm{and}\:\mathrm{CF}.\mathrm{Let}\:\mathrm{the}\:\mathrm{ray}\:\mathrm{AG}\:\mathrm{meet}\:\mathrm{BC} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{D}'.\mathrm{Then}\:\mathrm{by}\:\mathrm{above}\:\mathrm{result} \\ $$$$\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{BD}'}{\mathrm{D}'\mathrm{C}}.\frac{\mathrm{CE}}{.\mathrm{EA}}.\frac{\mathrm{AF}}{\mathrm{FB}}=\mathrm{1}.\mathrm{Then}\:\mathrm{combining} \\ $$$$\mathrm{to}\:\left(\ast\right)\:\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{BD}'}{\mathrm{D}'\mathrm{C}}=\frac{\mathrm{BD}}{\mathrm{DC}}\Leftrightarrow\frac{\mathrm{BD}'}{\mathrm{BC}}=\frac{\mathrm{BD}}{\mathrm{BC}} \\ $$$$\Rightarrow\mathrm{D}'\equiv\mathrm{D}\Rightarrow\mathrm{AD}\:\:\mathrm{which}\:\mathrm{shows}\:\mathrm{that}\:\mathrm{AD}, \\ $$$$\mathrm{BE}\:\mathrm{and}\:\mathrm{CF}\:\mathrm{are}\:\mathrm{concurrent}\:\mathrm{at}\:\mathrm{G}\left(\mathrm{q}.\mathrm{e}.\mathrm{d}\right) \\ $$$$\mathrm{Now}\:\:\mathrm{applying}\:\mathrm{Xeva}'\mathrm{s}\:\mathrm{theorem}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{problem}\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\mathrm{BD}}{\mathrm{DC}}.\frac{\mathrm{CE}}{\mathrm{EA}}.\frac{\mathrm{AF}}{\mathrm{FB}}=\mathrm{1}\Leftrightarrow\frac{\mathrm{2a}}{\mathrm{3a}}.\frac{\mathrm{12}}{\mathrm{6}}.\frac{\mathrm{3}}{\mathrm{x}}=\mathrm{1}\Rightarrow\frac{\mathrm{72a}}{\mathrm{18ax}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{4} \\ $$

Commented by I want to learn more last updated on 14/Aug/20

I really appreciate sir

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Answered by floor(10²Eta[1]) last updated on 14/Aug/20

by ceva′s theorem:  ((2a)/(3a))×((12)/6)×(3/x)=1⇒x=4

$$\mathrm{by}\:\mathrm{ceva}'\mathrm{s}\:\mathrm{theorem}: \\ $$$$\frac{\mathrm{2a}}{\mathrm{3a}}×\frac{\mathrm{12}}{\mathrm{6}}×\frac{\mathrm{3}}{\mathrm{x}}=\mathrm{1}\Rightarrow\mathrm{x}=\mathrm{4} \\ $$

Commented by I want to learn more last updated on 14/Aug/20

I really appreciate sir

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com