Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 108133 by ajfour last updated on 14/Aug/20

Commented by ajfour last updated on 14/Aug/20

Rod AB inside a smooth sphere  of radius R, Find Normal  reactions at A and B.

$${Rod}\:{AB}\:{inside}\:{a}\:{smooth}\:{sphere} \\ $$$${of}\:{radius}\:{R},\:{Find}\:{Normal} \\ $$$${reactions}\:{at}\:{A}\:{and}\:{B}. \\ $$

Answered by mr W last updated on 15/Aug/20

Commented by mr W last updated on 15/Aug/20

let λ=(m/M)  AC=((M×((a+b)/2)+m×a)/(M+m))=(((1+2λ)a+b)/(2(1+λ)))  CB=((a+(1+2λ)b)/(2(1+λ)))  cos γ=((a+b)/(2R))  ⇒γ=cos^(−1) {((a+b)/(2R))}  ((sin (α+γ))/(sin α))=((AO)/(AC))=((2(1+λ)R)/((1+2λ)a+b))  cos γ+((sin γ)/(tan α))=((2(1+λ)R)/((1+2λ)a+b))  ⇒α=tan^(−1) {((√(1−(((a+b)/(2R)))^2 ))/(((2(1+λ)R)/((1+2λ)a+b))−((a+b)/(2R))))}  ⇒β=tan^(−1) {((√(1−(((a+b)/(2R)))^2 ))/(((2(1+λ)R)/(a+(1+2λ)b))−((a+b)/(2R))))}  (N_1 /(sin β))=(((M+m)g)/(sin 2γ))  ⇒N_1 =((sin β (M+m)g)/(sin 2γ))  ⇒N_2 =((sin α (M+m)g)/(sin 2γ))

$${let}\:\lambda=\frac{{m}}{{M}} \\ $$$${AC}=\frac{{M}×\frac{{a}+{b}}{\mathrm{2}}+{m}×{a}}{{M}+{m}}=\frac{\left(\mathrm{1}+\mathrm{2}\lambda\right){a}+{b}}{\mathrm{2}\left(\mathrm{1}+\lambda\right)} \\ $$$${CB}=\frac{{a}+\left(\mathrm{1}+\mathrm{2}\lambda\right){b}}{\mathrm{2}\left(\mathrm{1}+\lambda\right)} \\ $$$$\mathrm{cos}\:\gamma=\frac{{a}+{b}}{\mathrm{2}{R}} \\ $$$$\Rightarrow\gamma=\mathrm{cos}^{−\mathrm{1}} \left\{\frac{{a}+{b}}{\mathrm{2}{R}}\right\} \\ $$$$\frac{\mathrm{sin}\:\left(\alpha+\gamma\right)}{\mathrm{sin}\:\alpha}=\frac{{AO}}{{AC}}=\frac{\mathrm{2}\left(\mathrm{1}+\lambda\right){R}}{\left(\mathrm{1}+\mathrm{2}\lambda\right){a}+{b}} \\ $$$$\mathrm{cos}\:\gamma+\frac{\mathrm{sin}\:\gamma}{\mathrm{tan}\:\alpha}=\frac{\mathrm{2}\left(\mathrm{1}+\lambda\right){R}}{\left(\mathrm{1}+\mathrm{2}\lambda\right){a}+{b}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\sqrt{\mathrm{1}−\left(\frac{{a}+{b}}{\mathrm{2}{R}}\right)^{\mathrm{2}} }}{\frac{\mathrm{2}\left(\mathrm{1}+\lambda\right){R}}{\left(\mathrm{1}+\mathrm{2}\lambda\right){a}+{b}}−\frac{{a}+{b}}{\mathrm{2}{R}}}\right\} \\ $$$$\Rightarrow\beta=\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\sqrt{\mathrm{1}−\left(\frac{{a}+{b}}{\mathrm{2}{R}}\right)^{\mathrm{2}} }}{\frac{\mathrm{2}\left(\mathrm{1}+\lambda\right){R}}{{a}+\left(\mathrm{1}+\mathrm{2}\lambda\right){b}}−\frac{{a}+{b}}{\mathrm{2}{R}}}\right\} \\ $$$$\frac{{N}_{\mathrm{1}} }{\mathrm{sin}\:\beta}=\frac{\left({M}+{m}\right){g}}{\mathrm{sin}\:\mathrm{2}\gamma} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{\mathrm{sin}\:\beta\:\left({M}+{m}\right){g}}{\mathrm{sin}\:\mathrm{2}\gamma} \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\frac{\mathrm{sin}\:\alpha\:\left({M}+{m}\right){g}}{\mathrm{sin}\:\mathrm{2}\gamma} \\ $$

Commented by ajfour last updated on 15/Aug/20

So quick, and superb solution,  thanks a lot Sir.

$${So}\:{quick},\:{and}\:{superb}\:{solution}, \\ $$$${thanks}\:{a}\:{lot}\:{Sir}. \\ $$

Commented by otchereabdullai@gmail.com last updated on 15/Aug/20

The world mathematician/ physicist  I always become very happy when i see  your solution to a question

$$\mathrm{The}\:\mathrm{world}\:\mathrm{mathematician}/\:\mathrm{physicist} \\ $$$$\mathrm{I}\:\mathrm{always}\:\mathrm{become}\:\mathrm{very}\:\mathrm{happy}\:\mathrm{when}\:\mathrm{i}\:\mathrm{see} \\ $$$$\mathrm{your}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{a}\:\mathrm{question} \\ $$

Answered by ajfour last updated on 15/Aug/20

Commented by ajfour last updated on 15/Aug/20

Ncos (α+θ)=Fcos (α−θ)    ...(i)  p=(√(R^2 −(((a+b)/2))^2 ))  cos α=((a+b)/(2R))  Nsin (α+θ)+Fsin (α−θ)=(M+m)g             ......(ii)  Torque balance about centre of sphere  mg(((b−a)/2)−ptan θ)cos θ=Mg(psin θ)  ⇒   tan θ=((m(b−a))/(2p(M+m)))  Now  using (i) in  (ii)     N{sin (α+θ)+sin (α−θ)((cos (α+θ))/(cos (α−θ)))}              = (M+m)g  ⇒  N=(((M+m)gcos (α−θ))/(sin 2α))    &          F=(((M+m)gcos (α+θ))/(sin 2α))   ■

$${N}\mathrm{cos}\:\left(\alpha+\theta\right)={F}\mathrm{cos}\:\left(\alpha−\theta\right)\:\:\:\:...\left({i}\right) \\ $$$${p}=\sqrt{{R}^{\mathrm{2}} −\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\alpha=\frac{{a}+{b}}{\mathrm{2}{R}} \\ $$$${N}\mathrm{sin}\:\left(\alpha+\theta\right)+{F}\mathrm{sin}\:\left(\alpha−\theta\right)=\left({M}+{m}\right){g} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:......\left({ii}\right) \\ $$$${Torque}\:{balance}\:{about}\:{centre}\:{of}\:{sphere} \\ $$$${mg}\left(\frac{{b}−{a}}{\mathrm{2}}−{p}\mathrm{tan}\:\theta\right)\mathrm{cos}\:\theta={Mg}\left({p}\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\:\:\:\mathrm{tan}\:\theta=\frac{{m}\left({b}−{a}\right)}{\mathrm{2}{p}\left({M}+{m}\right)} \\ $$$${Now}\:\:{using}\:\left({i}\right)\:{in}\:\:\left({ii}\right) \\ $$$$\:\:\:{N}\left\{\mathrm{sin}\:\left(\alpha+\theta\right)+\mathrm{sin}\:\left(\alpha−\theta\right)\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{cos}\:\left(\alpha−\theta\right)}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({M}+{m}\right){g} \\ $$$$\Rightarrow\:\:{N}=\frac{\left({M}+{m}\right){g}\mathrm{cos}\:\left(\alpha−\theta\right)}{\mathrm{sin}\:\mathrm{2}\alpha}\:\:\:\:\& \\ $$$$\:\:\:\:\:\:\:\:{F}=\frac{\left({M}+{m}\right){g}\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{sin}\:\mathrm{2}\alpha}\:\:\:\blacksquare \\ $$

Commented by mr W last updated on 15/Aug/20

perfect solution!

$${perfect}\:{solution}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com