Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 108228 by bemath last updated on 15/Aug/20

  ((⋎BeMath⋎)/⋔)   lim_(n→∞)  (((n+ln a)/n))^(n/b) ?

$$\:\:\frac{\curlyvee\mathcal{B}{e}\mathcal{M}{ath}\curlyvee}{\pitchfork} \\ $$$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{n}+\mathrm{ln}\:{a}}{{n}}\right)^{\frac{{n}}{{b}}} ?\: \\ $$

Answered by Dwaipayan Shikari last updated on 15/Aug/20

lim_(n→∞) (1+((loga)/n))^(((nloga)/(loga)).(1/b))   =e^((loga)/b) =a^(1/b)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{{loga}}{{n}}\right)^{\frac{{nloga}}{{loga}}.\frac{\mathrm{1}}{{b}}} \\ $$$$={e}^{\frac{{loga}}{{b}}} ={a}^{\frac{\mathrm{1}}{{b}}} \\ $$

Answered by john santu last updated on 15/Aug/20

   ((⋇JS⋇)/♥)  L =lim_(n→∞) (((n+ln a)/n))^(n/b)   ln L = lim_(n→∞) (n/b)ln (1+((ln a)/n))  set x = (1/n)→ { ((n→∞)),((x→0)) :}  ln L=lim_(x→0) (( ln (1+x.ln a))/(bx))  by L′Hopital rule  ln L=lim_(x→0) (((((ln a)/(1+x.ln a))))/b)=lim_(x→0) (((ln a)/(b(1+x.ln a))))  ln L = ((ln a)/b) = ln (a)^(1/b)   therefore L = a^(1/b)

$$\:\:\:\frac{\divideontimes{JS}\divideontimes}{\heartsuit} \\ $$$${L}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}+\mathrm{ln}\:{a}}{{n}}\right)^{\frac{{n}}{{b}}} \\ $$$$\mathrm{ln}\:{L}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}}{{b}}\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{ln}\:{a}}{{n}}\right) \\ $$$${set}\:{x}\:=\:\frac{\mathrm{1}}{{n}}\rightarrow\begin{cases}{{n}\rightarrow\infty}\\{{x}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\:\mathrm{ln}\:\left(\mathrm{1}+{x}.\mathrm{ln}\:{a}\right)}{{bx}} \\ $$$${by}\:{L}'{Hopital}\:{rule} \\ $$$$\mathrm{ln}\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{ln}\:{a}}{\mathrm{1}+{x}.\mathrm{ln}\:{a}}\right)}{{b}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{ln}\:{a}}{{b}\left(\mathrm{1}+{x}.\mathrm{ln}\:{a}\right)}\right) \\ $$$$\mathrm{ln}\:{L}\:=\:\frac{\mathrm{ln}\:{a}}{{b}}\:=\:\mathrm{ln}\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} \\ $$$${therefore}\:{L}\:=\:{a}^{\frac{\mathrm{1}}{{b}}} \\ $$

Answered by bemath last updated on 16/Aug/20

lim_(n→∞)  [ (1+(1/(((n/(ln a))))))^(n/(ln a))  ]^((1/b).((ln a)/1))   = e^((ln a)/b)  = e^(ln (a)^(1/b)  ) = (a)^(1/b) =(a)^(1/b)  .

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{{n}}{\mathrm{ln}\:{a}}\right)}\right)^{\frac{{n}}{\mathrm{ln}\:{a}}} \:\right]^{\frac{\mathrm{1}}{{b}}.\frac{\mathrm{ln}\:{a}}{\mathrm{1}}} \\ $$$$=\:{e}\:^{\frac{\mathrm{ln}\:{a}}{{b}}} \:=\:{e}^{\mathrm{ln}\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} \:} =\:\left({a}\right)^{\frac{\mathrm{1}}{{b}}} =\sqrt[{{b}}]{{a}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com