Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 108416 by mathdave last updated on 16/Aug/20

Answered by mathmax by abdo last updated on 16/Aug/20

I =∫ ln((√(1+x))+(√(1−x)))dx we do the changement x =cos(2t) ⇒  I =∫ ln((√(2cos^2 t)) +(√(2sin^2 t)))(−2sin(2t) dt  =−2 ∫ ln((√2)(cost +sint)sin(2t)dt  =−2 ln((√2)) ∫ sin(2t)dt −2∫ ln(cost +sint)sin(2t)dt  =(1/2)ln(2)cos(2t)−2 ∫ sin(2t)ln(cost +sint)dt by psrts   ∫ sin(2t)ln(cost +sint)dt =−(1/2)cos(2t)ln(cost +sint)  +(1/2) ∫ cos(2t)((cost−sint)/(cost +sint))dt  (1/2)∫cos(2t)((cost−sint)/(cost +sint))dt=(1/2)∫ cos(2t)×(((cost−sint)^2 )/(cos(2t)))dt  =(1/2)∫ (1−2cost sint)dt =(t/2) −(1/2)∫ sin(2t)dt  =(t/2) +(1/4)cos(2t) +c =(1/4) arcosx +(x/4) ⇒  I =(x/2)ln(2) +xln((√((1+x)/2))+(√((1−x)/2)))−(1/2)arcosx−(x/2)  +c  I =(x/2)ln(2)+xln((√(1+x))+(√(1−x)))+xln((1/(√2)))−(1/2)arcosx −(x/2) +c  =xln((√(1+x))+(√(1−x)))−(1/2)((π/2) −arcsinx) −(x/2) +c  ★I=xln((√(1+x))+(√(1−x)))+((arcsinx)/2)−(x/2) +C★  (C =c−(π/4))

I=ln(1+x+1x)dxwedothechangementx=cos(2t)I=ln(2cos2t+2sin2t)(2sin(2t)dt=2ln(2(cost+sint)sin(2t)dt=2ln(2)sin(2t)dt2ln(cost+sint)sin(2t)dt=12ln(2)cos(2t)2sin(2t)ln(cost+sint)dtbypsrtssin(2t)ln(cost+sint)dt=12cos(2t)ln(cost+sint)+12cos(2t)costsintcost+sintdt12cos(2t)costsintcost+sintdt=12cos(2t)×(costsint)2cos(2t)dt=12(12costsint)dt=t212sin(2t)dt=t2+14cos(2t)+c=14arcosx+x4I=x2ln(2)+xln(1+x2+1x2)12arcosxx2+cI=x2ln(2)+xln(1+x+1x)+xln(12)12arcosxx2+c=xln(1+x+1x)12(π2arcsinx)x2+cI=xln(1+x+1x)+arcsinx2x2+C(C=cπ4)

Answered by Sarah85 last updated on 17/Aug/20

∫ln ((√(1+x))+(√(1−x))) dx  integration by parts leads to  xln ((√(1+x))+(√(1−x))) −∫((x^2 −1+(√(1−x^2 )))/(2(x^2 −1)))dx  the first one can be written as ln ((√(1+x))+(√(1−x)))^x   the second one  ∫(1/(2(√(1−x^2 ))))dx−∫(1/2)dx=(1/2)arcsin x −(x/2)+C

ln(1+x+1x)dxintegrationbypartsleadstoxln(1+x+1x)x21+1x22(x21)dxthefirstonecanbewrittenasln(1+x+1x)xthesecondone121x2dx12dx=12arcsinxx2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com