All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 108416 by mathdave last updated on 16/Aug/20
Answered by mathmax by abdo last updated on 16/Aug/20
I=∫ln(1+x+1−x)dxwedothechangementx=cos(2t)⇒I=∫ln(2cos2t+2sin2t)(−2sin(2t)dt=−2∫ln(2(cost+sint)sin(2t)dt=−2ln(2)∫sin(2t)dt−2∫ln(cost+sint)sin(2t)dt=12ln(2)cos(2t)−2∫sin(2t)ln(cost+sint)dtbypsrts∫sin(2t)ln(cost+sint)dt=−12cos(2t)ln(cost+sint)+12∫cos(2t)cost−sintcost+sintdt12∫cos(2t)cost−sintcost+sintdt=12∫cos(2t)×(cost−sint)2cos(2t)dt=12∫(1−2costsint)dt=t2−12∫sin(2t)dt=t2+14cos(2t)+c=14arcosx+x4⇒I=x2ln(2)+xln(1+x2+1−x2)−12arcosx−x2+cI=x2ln(2)+xln(1+x+1−x)+xln(12)−12arcosx−x2+c=xln(1+x+1−x)−12(π2−arcsinx)−x2+c★I=xln(1+x+1−x)+arcsinx2−x2+C★(C=c−π4)
Answered by Sarah85 last updated on 17/Aug/20
∫ln(1+x+1−x)dxintegrationbypartsleadstoxln(1+x+1−x)−∫x2−1+1−x22(x2−1)dxthefirstonecanbewrittenasln(1+x+1−x)xthesecondone∫121−x2dx−∫12dx=12arcsinx−x2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com