All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 108417 by mathdave last updated on 16/Aug/20
Answered by Aziztisffola last updated on 16/Aug/20
t=2x⇒dt=2dx∫0∞2xe2x−1dx=12∫0∞tet−1dt=12Γ(2)ζ(2)=12×1×π26=π212
Answered by mnjuly1970 last updated on 16/Aug/20
ans:2x=tΩ=∫0∞2xe2x−1dx=12∫0∞tet−1dtΩ=12∫0∞ts−1et−1dt∣s=2=12ζ(2)Γ(2)=π212♣...♣M.Nazerian♣...
Answered by mathmax by abdo last updated on 16/Aug/20
I=2∫0∞xe2x−1dx=2∫0∞xe−2x1−e−2xdx=2∫0∞xe−2x(∑n=0∞e−2nx)dx=2∑n=0∞∫0∞xe−2(n+1)xdx=2(n+1)x=t2∑n=0∞∫0∞t2(n+1)e−tdt2(n+1)=12∑n=0∞1(n+1)2∫0∞te−tdt=12ξ(2).Γ(2)=π212
Terms of Service
Privacy Policy
Contact: info@tinkutara.com