Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 108469 by bemath last updated on 17/Aug/20

   ((⊂BeMath⊃)/∩)  (1)lim_(x→0)  ((1−cos x (√(cos 2x)) (√(cos 3x))...(√(cos nx)))/x^2 ) ?  (2)x^2 y′′+xy′−4y=0; y(1)=2 and     y′(1)=0  (3)find the probability that a person  throwing three  coins at once will get all the face or   everything back for second time at  5 the throws.

$$\:\:\:\frac{\subset\mathcal{B}{e}\mathcal{M}{ath}\supset}{\cap} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt{\mathrm{cos}\:\mathrm{3}{x}}...\sqrt{\mathrm{cos}\:{nx}}}{{x}^{\mathrm{2}} }\:? \\ $$$$\left(\mathrm{2}\right){x}^{\mathrm{2}} {y}''+{xy}'−\mathrm{4}{y}=\mathrm{0};\:{y}\left(\mathrm{1}\right)=\mathrm{2}\:{and} \\ $$$$\:\:\:{y}'\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\mathrm{3}\right){find}\:{the}\:{probability}\:{that}\:{a}\:{person}\:\:{throwing}\:{three} \\ $$$${coins}\:{at}\:{once}\:{will}\:{get}\:{all}\:{the}\:{face}\:{or}\: \\ $$$${everything}\:{back}\:{for}\:{second}\:{time}\:{at} \\ $$$$\mathrm{5}\:{the}\:{throws}. \\ $$

Answered by john santu last updated on 17/Aug/20

   ((⊸JS⊸)/∼)  (2) let x = e^r    ⇒ (dy/dr) = (dy/dx). (dx/dr)   ⇒(dy/dr) = x (dy/dx)  ⇒(d^2 y/dr^2 ) = x^2  (d^2 y/dx^2 )+x (dy/dx)  so we get   x^2  (d^2 y/dx^2 )+x (dy/dx) −4y = 0  ⇒(d^2 y/dr^2 )−4y = 0  homogenous equation   λ^2 −4=0 → λ=±2  general solution   y = C_1 e^(−2r)  + C_2 e^(2r)  =C_1 (e^r )^(−2) +C_2 (e^r )^2   y = C_1 x^(−2) +C_2 x^2   and y′(x)=−2C_1 x^(−3) +2C_2 x  (i)y(1)= C_1 +C_2 =2  (ii)y′(1)=−2C_1 +2C_2 =0  →C_1 =C_2   { ((C_1 =1)),((C_2 =1)) :}  ∴ y = x^(−2) +x^2

$$\:\:\:\frac{\multimap{JS}\multimap}{\sim} \\ $$$$\left(\mathrm{2}\right)\:{let}\:{x}\:=\:{e}^{{r}} \: \\ $$$$\Rightarrow\:\frac{{dy}}{{dr}}\:=\:\frac{{dy}}{{dx}}.\:\frac{{dx}}{{dr}}\: \\ $$$$\Rightarrow\frac{{dy}}{{dr}}\:=\:{x}\:\frac{{dy}}{{dx}} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}}{{dr}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{x}\:\frac{{dy}}{{dx}} \\ $$$${so}\:{we}\:{get}\: \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{x}\:\frac{{dy}}{{dx}}\:−\mathrm{4}{y}\:=\:\mathrm{0} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} {y}}{{dr}^{\mathrm{2}} }−\mathrm{4}{y}\:=\:\mathrm{0} \\ $$$${homogenous}\:{equation}\: \\ $$$$\lambda^{\mathrm{2}} −\mathrm{4}=\mathrm{0}\:\rightarrow\:\lambda=\pm\mathrm{2} \\ $$$${general}\:{solution}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} {e}^{−\mathrm{2}{r}} \:+\:{C}_{\mathrm{2}} {e}^{\mathrm{2}{r}} \:={C}_{\mathrm{1}} \left({e}^{{r}} \right)^{−\mathrm{2}} +{C}_{\mathrm{2}} \left({e}^{{r}} \right)^{\mathrm{2}} \\ $$$${y}\:=\:{C}_{\mathrm{1}} {x}^{−\mathrm{2}} +{C}_{\mathrm{2}} {x}^{\mathrm{2}} \\ $$$${and}\:{y}'\left({x}\right)=−\mathrm{2}{C}_{\mathrm{1}} {x}^{−\mathrm{3}} +\mathrm{2}{C}_{\mathrm{2}} {x} \\ $$$$\left({i}\right){y}\left(\mathrm{1}\right)=\:{C}_{\mathrm{1}} +{C}_{\mathrm{2}} =\mathrm{2} \\ $$$$\left({ii}\right){y}'\left(\mathrm{1}\right)=−\mathrm{2}{C}_{\mathrm{1}} +\mathrm{2}{C}_{\mathrm{2}} =\mathrm{0} \\ $$$$\rightarrow{C}_{\mathrm{1}} ={C}_{\mathrm{2}} \:\begin{cases}{{C}_{\mathrm{1}} =\mathrm{1}}\\{{C}_{\mathrm{2}} =\mathrm{1}}\end{cases} \\ $$$$\therefore\:{y}\:=\:{x}^{−\mathrm{2}} +{x}^{\mathrm{2}} \\ $$

Answered by mathmax by abdo last updated on 17/Aug/20

2) x^2 y^(′′)  +xy^′ −4y =0  with y(1)=2 and y^′ (1)=0  let y =x^m  ⇒y^′  =mx^(m−1)  ⇒y^((2))  =m(m−1)x^(m−2)   e⇒m(m−1)x^m  +mx^m −4x^m  =0 ⇒(m^2 −m+m−4)x^m  =0 ⇒  m^2 −4 =0 ⇒m =+^− 2 ⇒y (x)=ax^2  +bx^(−2)   y(1)=2 ⇒a+b =2  y^′ (x) =2ax−2b x^(−3)   wehave y^′ (1) =0 ⇒2a−2b =0 ⇒a=b ⇒  2a=2 ⇒a=b=1 ⇒y(x) =x^2  +(1/x^2 )

$$\left.\mathrm{2}\right)\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} \:+\mathrm{xy}^{'} −\mathrm{4y}\:=\mathrm{0}\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{1}\right)=\mathrm{2}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{y}\:=\mathrm{x}^{\mathrm{m}} \:\Rightarrow\mathrm{y}^{'} \:=\mathrm{mx}^{\mathrm{m}−\mathrm{1}} \:\Rightarrow\mathrm{y}^{\left(\mathrm{2}\right)} \:=\mathrm{m}\left(\mathrm{m}−\mathrm{1}\right)\mathrm{x}^{\mathrm{m}−\mathrm{2}} \\ $$$$\mathrm{e}\Rightarrow\mathrm{m}\left(\mathrm{m}−\mathrm{1}\right)\mathrm{x}^{\mathrm{m}} \:+\mathrm{mx}^{\mathrm{m}} −\mathrm{4x}^{\mathrm{m}} \:=\mathrm{0}\:\Rightarrow\left(\mathrm{m}^{\mathrm{2}} −\mathrm{m}+\mathrm{m}−\mathrm{4}\right)\mathrm{x}^{\mathrm{m}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{m}^{\mathrm{2}} −\mathrm{4}\:=\mathrm{0}\:\Rightarrow\mathrm{m}\:=\overset{−} {+}\mathrm{2}\:\Rightarrow\mathrm{y}\:\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{2}} \:+\mathrm{bx}^{−\mathrm{2}} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\mathrm{2}\:\Rightarrow\mathrm{a}+\mathrm{b}\:=\mathrm{2} \\ $$$$\mathrm{y}^{'} \left(\mathrm{x}\right)\:=\mathrm{2ax}−\mathrm{2b}\:\mathrm{x}^{−\mathrm{3}} \:\:\mathrm{wehave}\:\mathrm{y}^{'} \left(\mathrm{1}\right)\:=\mathrm{0}\:\Rightarrow\mathrm{2a}−\mathrm{2b}\:=\mathrm{0}\:\Rightarrow\mathrm{a}=\mathrm{b}\:\Rightarrow \\ $$$$\mathrm{2a}=\mathrm{2}\:\Rightarrow\mathrm{a}=\mathrm{b}=\mathrm{1}\:\Rightarrow\mathrm{y}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com