Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 108502 by mnjuly1970 last updated on 17/Aug/20

Commented by mnjuly1970 last updated on 17/Aug/20

♣please prove  above integrals  equalities.♣

$$\clubsuit{please}\:{prove}\:\:{above}\:{integrals} \\ $$$${equalities}.\clubsuit \\ $$

Answered by mathmax by abdo last updated on 17/Aug/20

1)  A_p =∫_0 ^(π/2)  sin(ptanx)tanx dx  changement  tanx =t give  A_p =∫_0 ^∞ sin(pt)t (dt/(1+t^2 )) =∫_0 ^∞   ((tsin(pt))/(1+t^2 )) dt  =(1/2)∫_(−∞) ^(+∞)  ((tsin(pt))/(t^2  +1))dt  =(1/2)Im(∫_(−∞) ^(+∞ )  ((te^(ipt) )/(t^2  +1))dt)  let  ϕ(z) =((z e^(ipz) )/(z^2  +1)) ⇒ϕ(z) =((z e^(ipz) )/((z−i)(z+i)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i) =2iπ  .((i e^(−p) )/(2i)) =iπ e^(−p)  ⇒  ★A_p =(π/2)e^(−p)  ★

$$\left.\mathrm{1}\right)\:\:\mathrm{A}_{\mathrm{p}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}\left(\mathrm{ptanx}\right)\mathrm{tanx}\:\mathrm{dx}\:\:\mathrm{changement}\:\:\mathrm{tanx}\:=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{A}_{\mathrm{p}} =\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\left(\mathrm{pt}\right)\mathrm{t}\:\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{tsin}\left(\mathrm{pt}\right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\frac{\mathrm{tsin}\left(\mathrm{pt}\right)}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Im}\left(\int_{−\infty} ^{+\infty\:} \:\frac{\mathrm{te}^{\mathrm{ipt}} }{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\right)\:\:\mathrm{let} \\ $$$$\varphi\left(\mathrm{z}\right)\:=\frac{\mathrm{z}\:\mathrm{e}^{\mathrm{ipz}} }{\mathrm{z}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\varphi\left(\mathrm{z}\right)\:=\frac{\mathrm{z}\:\mathrm{e}^{\mathrm{ipz}} }{\left(\mathrm{z}−\mathrm{i}\right)\left(\mathrm{z}+\mathrm{i}\right)}\:\:\mathrm{residus}\:\mathrm{theorem}\:\mathrm{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\mathrm{Res}\left(\varphi,\mathrm{i}\right)\:=\mathrm{2i}\pi\:\:.\frac{\mathrm{i}\:\mathrm{e}^{−\mathrm{p}} }{\mathrm{2i}}\:=\mathrm{i}\pi\:\mathrm{e}^{−\mathrm{p}} \:\Rightarrow \\ $$$$\bigstar\mathrm{A}_{\mathrm{p}} =\frac{\pi}{\mathrm{2}}\mathrm{e}^{−\mathrm{p}} \:\bigstar \\ $$

Commented by mnjuly1970 last updated on 17/Aug/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\: \\ $$

Commented by mathmax by abdo last updated on 17/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Commented by mnjuly1970 last updated on 17/Aug/20

the god bless you and keep you my  friend and my masster ..(thank you)^∞

$$\mathrm{the}\:\mathrm{god}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{and}\:\mathrm{keep}\:\mathrm{you}\:\mathrm{my} \\ $$$$\mathrm{friend}\:\mathrm{and}\:\mathrm{my}\:\mathrm{masster}\:..\left(\mathrm{thank}\:\mathrm{you}\right)^{\infty} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com