Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 108697 by 150505R last updated on 18/Aug/20

Answered by mathmax by abdo last updated on 18/Aug/20

I =∫_0 ^∞   (((lnx)^2 )/(1+x^2 )) dx ⇒ I =∫_0 ^1  (((lnx)^2 )/(1+x^2 ))dx +∫_1 ^(+∞)  (((lnx)^2 )/(1+x^2 ))dx(→x=(1/t))  =∫_0 ^1  (((lnx)^2 )/(1+x^2 ))dx −∫_0 ^1  (((lnt)^2 )/(1+(1/t^2 )))(−(dt/t^2 )) =2∫_0 ^1  (((lnx)^2 )/(1+x^2 ))dx  =2 ∫_0 ^1 (lnx)^2  Σ_(n=0) ^∞ (−1)^n  x^(2n) dx =2Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^(2n) (lnx)^2  dx  =2Σ_(n=0) ^∞  (−1)^n  A_n   A_n =∫_0 ^1  x^(2n) (lnx)^2  dx =_(by psrts) [(x^(2n+1) /(2n+1))(lnx)^2 ]_0 ^1 −∫_0 ^1  (x^(2n+1) /(2n+1))((2ln(x))/x)dx  =−(2/(2n+1)) ∫_0 ^1  x^(2n)  lnxdx =−(2/(2n+1)){ [  (x^(2n+1) /(2n+1))lnx]_0 ^1 −∫_0 ^1  (x^(2n) /(2n+1))dx}  =−(2/(2n+1)){−(1/((2n+1)^2 ))} =(2/((2n+1)^3 )) ⇒  I =4 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 ))  rest to find the value of this serie by fourier  ...be continued....

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:+\int_{\mathrm{1}} ^{+\infty} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\left(\rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnt}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right)\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}} \mathrm{dx}\:=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$$$=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{A}_{\mathrm{n}} \\ $$$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\mathrm{dx}\:=_{\mathrm{by}\:\mathrm{psrts}} \left[\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\left(\mathrm{lnx}\right)^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\frac{\mathrm{2ln}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \:\mathrm{lnxdx}\:=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\left\{\:\left[\:\:\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\mathrm{lnx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{dx}\right\} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\left\{−\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\right\}\:=\frac{\mathrm{2}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$$\mathrm{I}\:=\mathrm{4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\:\:\mathrm{rest}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{this}\:\mathrm{serie}\:\mathrm{by}\:\mathrm{fourier} \\ $$$$...\mathrm{be}\:\mathrm{continued}.... \\ $$$$ \\ $$

Commented by 150505R last updated on 18/Aug/20

thanks a lot sir...

$${thanks}\:{a}\:{lot}\:{sir}... \\ $$

Commented by mathdave last updated on 18/Aug/20

u ve tried let me complet d rest

$${u}\:{ve}\:{tried}\:{let}\:{me}\:{complet}\:{d}\:{rest} \\ $$

Commented by abdomsup last updated on 18/Aug/20

you are welcome sir

$${you}\:{are}\:{welcome}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com