Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 108787 by 150505R last updated on 19/Aug/20

Answered by Dwaipayan Shikari last updated on 19/Aug/20

1−Σ_(n=1) ^∞ (1/(8n−1))+Σ_(n=1) ^∞ (1/(8n+1))  1+Σ_(n=1) ^∞ ((1/(8n+1))−(1/(8n−1)))  1−2Σ_(n=1) ^∞ (1/(64n^2 −1))  1−2((1/(16))(8−π−(√2)π))  =(π/8)+(((√2)π)/8)

$$\mathrm{1}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{8}{n}−\mathrm{1}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{8}{n}+\mathrm{1}} \\ $$$$\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{8}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{8}{n}−\mathrm{1}}\right) \\ $$$$\mathrm{1}−\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{64}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{16}}\left(\mathrm{8}−\pi−\sqrt{\mathrm{2}}\pi\right)\right) \\ $$$$=\frac{\pi}{\mathrm{8}}+\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}} \\ $$$$ \\ $$

Commented by 150505R last updated on 19/Aug/20

can you explain fourth step ?

$${can}\:{you}\:{explain}\:{fourth}\:{step}\:? \\ $$

Commented by mnjuly1970 last updated on 19/Aug/20

           he has used  the digamma  function .

$$\:\:\:\:\:\:\:\:\:\:\:{he}\:{has}\:{used}\:\:{the}\:{digamma} \\ $$$${function}\:. \\ $$

Commented by 1549442205PVT last updated on 19/Aug/20

ψ(x)=(d/dx)lnΓ(x)=((Γ′(x))/(Γ(x))),ψ(z+1)=ψ(z)+(1/z)  ψ(n)=H_(n−1) −γ,where H_n  = Σ_(k=1) ^(n) (1/k)  (H_n −harmonic number  ,γ−Ole−Mascheroni constant)  ψ(n+(1/2))=−γ−2ln2+Σ_(k=1) ^(n) (2/(2k−1))

$$\psi\left(\mathrm{x}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\mathrm{ln}\Gamma\left(\mathrm{x}\right)=\frac{\Gamma'\left(\mathrm{x}\right)}{\Gamma\left(\mathrm{x}\right)},\psi\left(\mathrm{z}+\mathrm{1}\right)=\psi\left(\mathrm{z}\right)+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$\psi\left(\mathrm{n}\right)=\mathrm{H}_{\mathrm{n}−\mathrm{1}} −\gamma,\mathrm{where}\:\mathrm{H}_{\mathrm{n}} \:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\left(\mathrm{H}_{\mathrm{n}} −\mathrm{harmonic}\:\mathrm{number}\right. \\ $$$$\left.,\gamma−\mathrm{Ole}−\mathrm{Mascheroni}\:\mathrm{constant}\right) \\ $$$$\psi\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma−\mathrm{2ln2}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\frac{\mathrm{2}}{\mathrm{2k}−\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com