Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 108914 by 1549442205PVT last updated on 21/Aug/20

  Q108815(19/8/20)(unanswer)by 1x.x  Given f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8))))  x,a∈R;x,a>0.Prove that  1<f(x)<2  Solution:Put x=tan^2 A,a=tan^2 B(A,B∈[0,(π/2))  f(x)=cosA+cosB+((tanAtanB)/( (√(tan^2 Atan^2 B+8))))  =cosA+cosB+((sinAsinB)/( (√(8cos^2 Acos^2 B+sin^2 Asin^2 B))))  Put cosA=z,cosB=y(z,y∈(0,1])we have  f=z+y+((√((1−z^2 )(1−y^2 )))/( (√(8z^2 y^2 +(1−z^2 )(1−y^2 )))))  =z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))  i)First we prove f(x)>1  ⇔z+y+((√((1−z^2 )(1− y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))>1(1)  If z+y≥1 then the inequality(1) is  true.Consider z+y<1.Put  m=1−(z+y)⇔z+y=1−m(0<m≤1)  z^2 +y^2 =(z+y)^2 −2zy=(1−m)^2 −2zy  (1)⇔(((1−z^2 )(1−y^2 ))/(   9z^2 y^2 +1−(z^2 +y^2 )))>[1−(z+y)]^2   ⇔1+z^2 y^2 −(z^2 +y^2 )>[9z^2 y^2 +1−(z^2 +y^2 )]m^2   1+z^2 y^2 −[1−2m+m^2 −2zy]>[9z^2 y^2 +1−(1−2m+m^2 −2zy)]m^2   ⇔z^2 y^2 +2zy+2m−m^2 >(9z^2 y^2 +2zy+2m−m^2 )m^2   ⇔m^4 −m^2 (9z^2 y^2 +2zy+2m)+(z^2 y^2 +2zy+2m−m^2 )>0  We look at LHS as a quadratic polynomial  with respect to ♮im^2 ε defined on the interval(0;1)   and we denote by P(m).By the theorem  above the sign of quadratic poly.P(m)>0⇔   Δ_P =(9z^2 y^2 +2zy+2m)^2 −4(z^2 y^2 +2zy+2m−m^2 )<0  ⇔81z^4 y^4 +4z^2 y^2 +4m^2 +36z^3 y^3 +36mz^2 y^2 +8mzy−4(z^2 y^2 +2zy+2m−m^2 )<0  ⇔81z^4 y^4 +36z^3 y^3 +36mz^2 y^2 +8(m−1)zy+8m^2 −8m<0  ⇔8m^2 +(36z^2 y^2 +8zy−8)m+81z^4 y^4 +36z^3 y^3 −8zy<0(3)  We look at LHS (3) like as a quadratic  polynomial w.r.t ♮mε and denote by Q(m)  We has Q(0)=81(zy)^4 +36(zy)^3 −8zy  ≤81t/64+36t/16−8t=225t/64−8t<0  (due to 0< t=zy≤1/4 )  Q(1)=1+36(zy)^2 +8zy−8+81(zy)^4 +36(zy)^3 −8zy  =−7+36(zy)^2 +81(zy)^4 +36(zy)^3 ≤  −7+36/16+81/256+36/64<0 (due to zy≤1/4)  By the convert theorem above the sign  of the quadratic polynomial we infer  Q(m)>0 ∀m∈(0;1)which means P(m)  has Δ_P <0 ∀m∈(0;1)⇒the inequality (1)   proved  ii)Now we prove that f(x)<2  ⇔z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))<2(4)  ⇔(((1−z^2 )(1−y^2 ))/(9z^2 y^2 +1−(z^2 +y^2 )))<[2−(z+y)]^2   ⇔1+z^2 y^2 −(z^2 +y^2 )<[9z^2 y^2 +1−(z^2 +y^2 )](1+m)^2 (note  (1−m=z+y like as above we have  −1≤m=1−(z+y)<1 as 0<z+y≤2(∗))  ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )(1+2m+m^2 )  ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )+(9z^2 y^2 +2zy)(2m+m^2 )−m^4 +4m^2 >0  ⇔−m^4 +4m^2 +(9z^2 y^2 +2zy)(2m+m^2 )+8z^2 y^2 >0  ⇔(9m^2 +18m+8)(zy)^2 +2(m^2 +2m)zy−m^4 +4m^2 >0(4)  We look at  LHS like as a quadratic  polynomial w.r.t ♮zyε and denote by  H(t)(set t=zy,0<zy≤(((z+y)/2))≤1)  a)The case  9m^2 +18m+8>0   We consider the discriminant Δ_H ′of H(t)  Δ_H ′=(m^2 +2m)^2 +(9m^2 +18m+8)(m^4 −4m^2 )  =m^4 +4m^3 +4m^2 +9m^6 +18m^5 −28m^4 −72m^3 −32m^2   =9m^6 +18m^5 −27m^4 −68m^3 −28m^2   =m^2 (9m^4 +18m^3 −27m^2 −68m−28)  <0( due to ∣m∣≤1). Therefore,we   infer H(t)>0∀t∈(0;1]which means  the inequality (4)is  proved ,so f(x)<2  b)The case  9m^2 +18m+8 < 0    ⇔−1<m<−2/3 .We have   { ((H(0)=−m^4 +4m^2 =m^2 (4−m^2 )>0 )),((H(1)=−m^4 +15m^2 +22m+8=)),(((1+m)(−m^3 +m^2 +14m+8)>0)) :}  By the convert theorem above the sign  of the quadratic polynomial we infer  H(t)>0 ∀t=zy∈(0;1)⇒(4)is proved  which means we ger f(2)<2  other way:  Similar to the case i)Rewrite H(t) in   the form H(m^2 )as the quadratic poly.  w.r.t ♮m^2 ε with the highest efficient  k=(−1)we get H(0)>0,H(1)>0  ⇒kH(0)<0,kH(1)<0⇒H(m)>0  ∀m^2 ∈[0,1]⇔m∈[−1,1]  From i)and ii)we obtain 1<f(x)<2(q.e.d)

$$ \\ $$ $$\mathrm{Q108815}\left(\mathrm{19}/\mathrm{8}/\mathrm{20}\right)\left(\mathrm{unanswer}\right)\mathrm{by}\:\mathrm{1x}.\mathrm{x} \\ $$ $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{a}}}+\frac{\sqrt{\mathrm{ax}}}{\:\sqrt{\mathrm{ax}+\mathrm{8}}} \\ $$ $$\mathrm{x},\mathrm{a}\in\mathrm{R};\mathrm{x},\mathrm{a}>\mathrm{0}.\mathrm{Prove}\:\mathrm{that} \\ $$ $$\mathrm{1}<\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$ $$\mathrm{Solution}:\mathrm{Put}\:\mathrm{x}=\mathrm{tan}^{\mathrm{2}} \mathrm{A},\mathrm{a}=\mathrm{tan}^{\mathrm{2}} \mathrm{B}\left(\mathrm{A},\mathrm{B}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\right. \\ $$ $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{tanAtanB}}{\:\sqrt{\mathrm{tan}^{\mathrm{2}} \mathrm{Atan}^{\mathrm{2}} \mathrm{B}+\mathrm{8}}} \\ $$ $$=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{sinAsinB}}{\:\sqrt{\mathrm{8cos}^{\mathrm{2}} \mathrm{Acos}^{\mathrm{2}} \mathrm{B}+\mathrm{sin}^{\mathrm{2}} \mathrm{Asin}^{\mathrm{2}} \mathrm{B}}} \\ $$ $$\mathrm{Put}\:\mathrm{cosA}=\mathrm{z},\mathrm{cosB}=\mathrm{y}\left(\mathrm{z},\mathrm{y}\in\left(\mathrm{0},\mathrm{1}\right]\right)\mathrm{we}\:\mathrm{have} \\ $$ $$\mathrm{f}=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}} \\ $$ $$=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}} \\ $$ $$\left.\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{First}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)>\mathrm{1} \\ $$ $$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\:\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}>\mathrm{1}\left(\mathrm{1}\right) \\ $$ $$\mathrm{If}\:\mathrm{z}+\mathrm{y}\geqslant\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{inequality}\left(\mathrm{1}\right)\:\mathrm{is} \\ $$ $$\mathrm{true}.\mathrm{Consider}\:\mathrm{z}+\mathrm{y}<\mathrm{1}.\mathrm{Put} \\ $$ $$\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\Leftrightarrow\mathrm{z}+\mathrm{y}=\mathrm{1}−\mathrm{m}\left(\mathrm{0}<\mathrm{m}\leqslant\mathrm{1}\right) \\ $$ $$\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\left(\mathrm{z}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2zy}=\left(\mathrm{1}−\mathrm{m}\right)^{\mathrm{2}} −\mathrm{2zy} \\ $$ $$\left(\mathrm{1}\right)\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\:\:\:\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}>\left[\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$ $$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\mathrm{m}^{\mathrm{2}} \\ $$ $$\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left[\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right]>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right)\right]\mathrm{m}^{\mathrm{2}} \\ $$ $$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} >\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\mathrm{m}^{\mathrm{2}} \\ $$ $$\Leftrightarrow\mathrm{m}^{\mathrm{4}} −\mathrm{m}^{\mathrm{2}} \left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)+\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0} \\ $$ $$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$ $$\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\natural\mathrm{im}^{\mathrm{2}} \varepsilon\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{interval}\left(\mathrm{0};\mathrm{1}\right) \\ $$ $$\:\mathrm{and}\:\mathrm{we}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{P}\left(\mathrm{m}\right).\mathrm{By}\:\mathrm{the}\:\mathrm{theorem} \\ $$ $$\mathrm{above}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{quadratic}\:\mathrm{poly}.\mathrm{P}\left(\mathrm{m}\right)>\mathrm{0}\Leftrightarrow \\ $$ $$\:\Delta_{\mathrm{P}} =\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$ $$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{4z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8mzy}−\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$ $$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8}\left(\mathrm{m}−\mathrm{1}\right)\mathrm{zy}+\mathrm{8m}^{\mathrm{2}} −\mathrm{8m}<\mathrm{0} \\ $$ $$\Leftrightarrow\mathrm{8m}^{\mathrm{2}} +\left(\mathrm{36z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}\right)\mathrm{m}+\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} −\mathrm{8zy}<\mathrm{0}\left(\mathrm{3}\right) \\ $$ $$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\left(\mathrm{3}\right)\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$ $$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\natural\mathrm{m}\varepsilon\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{Q}\left(\mathrm{m}\right) \\ $$ $$\mathrm{We}\:\mathrm{has}\:\mathrm{Q}\left(\mathrm{0}\right)=\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$ $$\leqslant\mathrm{81t}/\mathrm{64}+\mathrm{36t}/\mathrm{16}−\mathrm{8t}=\mathrm{225t}/\mathrm{64}−\mathrm{8t}<\mathrm{0} \\ $$ $$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{0}<\:\mathrm{t}=\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\:\right) \\ $$ $$\mathrm{Q}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}+\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$ $$=−\mathrm{7}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} \leqslant \\ $$ $$−\mathrm{7}+\mathrm{36}/\mathrm{16}+\mathrm{81}/\mathrm{256}+\mathrm{36}/\mathrm{64}<\mathrm{0}\:\left(\mathrm{due}\:\mathrm{to}\:\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\right) \\ $$ $$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$ $$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$ $$\mathrm{Q}\left(\mathrm{m}\right)>\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\mathrm{which}\:\mathrm{means}\:\mathrm{P}\left(\mathrm{m}\right) \\ $$ $$\mathrm{has}\:\Delta_{\mathrm{P}} <\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\: \\ $$ $$\mathrm{proved} \\ $$ $$\left.\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2} \\ $$ $$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}<\mathrm{2}\left(\mathrm{4}\right) \\ $$ $$\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}<\left[\mathrm{2}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$ $$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)<\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\left(\mathrm{1}+\mathrm{m}\right)^{\mathrm{2}} \left(\mathrm{note}\right. \\ $$ $$\left(\mathrm{1}−\mathrm{m}=\mathrm{z}+\mathrm{y}\:\mathrm{like}\:\mathrm{as}\:\mathrm{above}\:\mathrm{we}\:\mathrm{have}\right. \\ $$ $$\left.−\mathrm{1}\leqslant\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)<\mathrm{1}\:\mathrm{as}\:\mathrm{0}<\mathrm{z}+\mathrm{y}\leqslant\mathrm{2}\left(\ast\right)\right) \\ $$ $$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right) \\ $$ $$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)+\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0} \\ $$ $$\Leftrightarrow−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} +\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)+\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} >\mathrm{0} \\ $$ $$\Leftrightarrow\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)\mathrm{zy}−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0}\left(\mathrm{4}\right) \\ $$ $$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\:\mathrm{LHS}\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$ $$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\natural\mathrm{zy}\varepsilon\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by} \\ $$ $$\mathrm{H}\left(\mathrm{t}\right)\left(\mathrm{set}\:\mathrm{t}=\mathrm{zy},\mathrm{0}<\mathrm{zy}\leqslant\left(\frac{\mathrm{z}+\mathrm{y}}{\mathrm{2}}\right)\leqslant\mathrm{1}\right) \\ $$ $$\left.\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}>\mathrm{0}\: \\ $$ $$\mathrm{We}\:\mathrm{consider}\:\mathrm{the}\:\mathrm{discriminant}\:\Delta_{\mathrm{H}} '\mathrm{of}\:\mathrm{H}\left(\mathrm{t}\right) \\ $$ $$\Delta_{\mathrm{H}} '=\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)^{\mathrm{2}} +\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{m}^{\mathrm{4}} −\mathrm{4m}^{\mathrm{2}} \right) \\ $$ $$=\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{3}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{28m}^{\mathrm{4}} −\mathrm{72m}^{\mathrm{3}} −\mathrm{32m}^{\mathrm{2}} \\ $$ $$=\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{27m}^{\mathrm{4}} −\mathrm{68m}^{\mathrm{3}} −\mathrm{28m}^{\mathrm{2}} \\ $$ $$=\mathrm{m}^{\mathrm{2}} \left(\mathrm{9m}^{\mathrm{4}} +\mathrm{18m}^{\mathrm{3}} −\mathrm{27m}^{\mathrm{2}} −\mathrm{68m}−\mathrm{28}\right) \\ $$ $$<\mathrm{0}\left(\:\boldsymbol{\mathrm{due}}\:\boldsymbol{\mathrm{to}}\:\mid\boldsymbol{\mathrm{m}}\mid\leqslant\mathrm{1}\right).\:\mathrm{Therefore},\mathrm{we}\: \\ $$ $$\mathrm{infer}\:\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\forall\mathrm{t}\in\left(\mathrm{0};\mathrm{1}\right]\mathrm{which}\:\mathrm{means} \\ $$ $$\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{4}\right)\mathrm{is}\:\:\mathrm{proved}\:,\mathrm{so}\:\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$ $$\left.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}\:<\:\mathrm{0}\: \\ $$ $$\:\Leftrightarrow−\mathrm{1}<\boldsymbol{\mathrm{m}}<−\mathrm{2}/\mathrm{3}\:.\mathrm{We}\:\mathrm{have} \\ $$ $$\begin{cases}{\mathrm{H}\left(\mathrm{0}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} =\mathrm{m}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0}\:}\\{\mathrm{H}\left(\mathrm{1}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{15m}^{\mathrm{2}} +\mathrm{22m}+\mathrm{8}=}\\{\left(\mathrm{1}+\mathrm{m}\right)\left(−\mathrm{m}^{\mathrm{3}} +\mathrm{m}^{\mathrm{2}} +\mathrm{14m}+\mathrm{8}\right)>\mathrm{0}}\end{cases} \\ $$ $$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$ $$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$ $$\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\:\forall\mathrm{t}=\mathrm{zy}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\left(\mathrm{4}\right)\mathrm{is}\:\mathrm{proved} \\ $$ $$\mathrm{which}\:\mathrm{means}\:\mathrm{we}\:\mathrm{ger}\:\mathrm{f}\left(\mathrm{2}\right)<\mathrm{2} \\ $$ $$\boldsymbol{\mathrm{other}}\:\boldsymbol{\mathrm{way}}: \\ $$ $$\left.\mathrm{Similar}\:\mathrm{to}\:\mathrm{the}\:\mathrm{case}\:\mathrm{i}\right)\mathrm{Rewrite}\:\mathrm{H}\left(\mathrm{t}\right)\:\mathrm{in}\: \\ $$ $$\mathrm{the}\:\mathrm{form}\:\mathrm{H}\left(\mathrm{m}^{\mathrm{2}} \right)\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{poly}. \\ $$ $$\mathrm{w}.\mathrm{r}.\mathrm{t}\:\natural\mathrm{m}^{\mathrm{2}} \varepsilon\:\mathrm{with}\:\mathrm{the}\:\mathrm{highest}\:\mathrm{efficient} \\ $$ $$\mathrm{k}=\left(−\mathrm{1}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{H}\left(\mathrm{0}\right)>\mathrm{0},\mathrm{H}\left(\mathrm{1}\right)>\mathrm{0} \\ $$ $$\Rightarrow\mathrm{kH}\left(\mathrm{0}\right)<\mathrm{0},\mathrm{kH}\left(\mathrm{1}\right)<\mathrm{0}\Rightarrow\mathrm{H}\left(\mathrm{m}\right)>\mathrm{0} \\ $$ $$\forall\mathrm{m}^{\mathrm{2}} \in\left[\mathrm{0},\mathrm{1}\right]\Leftrightarrow\mathrm{m}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$ $$\left.\boldsymbol{\mathrm{F}}\left.\boldsymbol{\mathrm{rom}}\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{obtain}}\:\mathrm{1}<\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Commented by1549442205PVT last updated on 21/Aug/20

Thank you,sir.You are welcome

$$\mathrm{Thank}\:\mathrm{you},\mathrm{sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Commented by1xx last updated on 24/Aug/20

  f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8))))  x>0 , a>0  prove:1<f(x)<2  f^′ (x)=−((1/2))(1/((1+x)(√(1+x))))+(−(1/2))(1/((1+(8/(ax)))(√(1+(8/(ax))))))(8/a)(−(1/x^2 ))  f^′ (x)=0⇒(x^2 −(8/a))[x^2 +(8/a)(3−(8/a))x+(8/a)]=0  ∵x>0  ∴x_1 =(√(8/a))  △=[8/a(3−8/a)]^2 −4(8/a)≥0⇒a≤2  f^′ (x)=0⇒ { ((f^′ (x_1 =(√(8/a)))=0  a≥2)),((f^′ (x_1 =(√(8/a)))=f^′ (x_(2,3) )=0  a<2)) :}    case A: a≥2  f(x_1 =(√(8/a)))=(2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))  lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))  ∵a≥2  ∴(2/( (√(1+(√(8/a))))))>1  ∴ f_(max) =f(x_1 =(√(8/a)))  f(x)>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1  f(x_1 =(√(8/a)))≷2  (2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))≷2  let t=(√(1+(√(8/a))))  then a=(8/((t^2 −1)^2 ))  (2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))≷2 ⇔(((t^2 −1)^2 )/((t^2 −1)^2 +8))≷4∙(((t−1)^2 )/t^2 )  ⇔0≷3t^4 −2t^3 −9t^2 +36  ⇔0≷2(t−1)t^3 +(t^2 −6)^2 +3t^2   ∵t>1  ∴(2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))<2   ∴f(x)≤f_(max) =f(x_1 =(√(8/a)))<2  ∵f(x)>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1  ∴ 1<f(x)<2    case B: 0<a<2  f^′ (x_(2,3) )=0  ⇒ x_(2,3) ^2 +(8/a)(3−(8/a))x_(2,3) +(8/a)=0  ⇒x_2 x_3 =(8/a)  ∵x_1 =(√(8/a))  ∴x_2 <x_1 <x_3   x_(2,3) ^2 +(8/a)(3−(8/a))x_(2,3) +(8/a)=0  let p=x_(2,3)   (ap)^2 +8(3a−8)p+8a=0 ⇒  (ap+8)(ap+a)=(8+a)(ap)+8(8−3a)p ⇒  a(ap+8)(p+1)=(a^2 −16a+64)p ⇒  (1/(1+p))∙((ap)/(ap+8))=(a^2 /((8−a)^2 )) ⇒  (1/( (√(1+x_(2,3) ))))∙((√(ax_(2,3) ))/( (√(ax_(2,3) +8))))=(a/(8−a))  due to 0<a<2  let m=(1/( (√(1+x_(2,3) ))))  and n=((√(ax_(2,3) ))/( (√(ax_(2,3) +8))))  then  { ((((1/m^2 )−1)((1/n^2 )−1)=(8/a))),((mn=(a/(8−a)))) :} ⇒  (m+n)^2 =1+mn=(8/(8−a)) ⇒  m+n=(√(8/(8−a)))  f(x_(2,3) )≷f(x_1 ) ⇔( m+n)≷(2/( (√(1+(√(8/a))))))  ⇔ (√(8/(8−a)))≷(2/( (√(1+(√(8/a))))))  ⇔ ((√8)/( (√(((√8)−(√a))((√8)+(√a))))))≷((2(√(√a)))/( (√(((√8)+(√a))))))  ⇔ (√8)≷(√(4(√a)∙((√8)−(√a))))  ⇔ ((√2))^2 ≷2(√2)(√a)−((√a))^2   ⇔ ((√a)−(√2))^2 ≷0  ∵((√a)−(√2))^2 >0  ∴ f(x_(2,3) )>f(x_1 )  f_(max) =max{f(x_2 ),f(x_3 )}≷2  ⇔( m+n+(1/( (√(1+a)))))≷2  ⇔ (1/2)((√(8/(8−a)))+(1/( (√(1+a)))))≷1  ∵ (1/2)((√(8/(8−a)))+(1/( (√(1+a)))))≤(√((1/2)((8/(8−a)))+(1/(1+a))))  ∴ f_(max) =max{f(x_2 ),f(x_3 )}≷2  ⇔ (√((1/2)((8/(8−a)))+(1/(1+a))))≷1  ⇔ 0≷a(7−2a)  ∵ 0<a<2  ∴ 0<a(7−2a)  ∴ f_(max) =max{f(x_2 ),f(x_3 )}<2  if f(x_1 )>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1        then 1<f(x)<2  else f_(min) =f(x_1 )  f_(min) =f(x_1 )≷1  ⇔ (2/( (√(1+(√(8/a))))))≷(1−(1/( (√(1+a)))))  make Rt△ ((1/( (√(1+a)))))^2 +(((√a)/( (√(1+a)))))^2 =1^2   ∴ ((√a)/( (√(1+a))))>1−(1/( (√(1+a))))  think of (2/( (√(1+(√(8/a))))))≷((√a)/( (√(1+a))))  ⇔ 3a−(√8)(√a)+4≷0  ⇔ 2a+((√a))^2 −2(√2)(√a)+((√2))^2 +2≷0  ⇔ 2a+((√a)−(√2))^2 +2≷0  ∵ a>0  ∴ 2a+((√a)−(√2))^2 +2>0  therefore (2/( (√(1+(√(8/a))))))>((√a)/( (√(1+a))))>1−(1/( (√(1+a))))  f_(min) =f(x_1 )>1  so in case B, 1<f(x)<2    Q.E.D

$$ \\ $$ $${f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}+\frac{\sqrt{{ax}}}{\:\sqrt{{ax}+\mathrm{8}}} \\ $$ $${x}>\mathrm{0}\:,\:{a}>\mathrm{0} \\ $$ $${prove}:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$ $${f}^{'} \left({x}\right)=−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)\sqrt{\mathrm{1}+{x}}}+\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{8}}{{ax}}\right)\sqrt{\mathrm{1}+\frac{\mathrm{8}}{{ax}}}}\left(\mathrm{8}/{a}\right)\left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right) \\ $$ $${f}^{'} \left({x}\right)=\mathrm{0}\Rightarrow\left({x}^{\mathrm{2}} −\frac{\mathrm{8}}{{a}}\right)\left[{x}^{\mathrm{2}} +\frac{\mathrm{8}}{{a}}\left(\mathrm{3}−\frac{\mathrm{8}}{{a}}\right){x}+\frac{\mathrm{8}}{{a}}\right]=\mathrm{0} \\ $$ $$\because{x}>\mathrm{0} \\ $$ $$\therefore{x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}} \\ $$ $$\bigtriangleup=\left[\mathrm{8}/{a}\left(\mathrm{3}−\mathrm{8}/{a}\right)\right]^{\mathrm{2}} −\mathrm{4}\left(\mathrm{8}/{a}\right)\geqslant\mathrm{0}\Rightarrow{a}\leqslant\mathrm{2} \\ $$ $${f}^{'} \left({x}\right)=\mathrm{0}\Rightarrow\begin{cases}{{f}^{'} \left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right)=\mathrm{0}\:\:{a}\geqslant\mathrm{2}}\\{{f}^{'} \left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right)={f}^{'} \left({x}_{\mathrm{2},\mathrm{3}} \right)=\mathrm{0}\:\:{a}<\mathrm{2}}\end{cases} \\ $$ $$ \\ $$ $${case}\:{A}:\:{a}\geqslant\mathrm{2} \\ $$ $${f}\left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}} \\ $$ $$\underset{{x}\rightarrow\mathrm{0},\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}} \\ $$ $$\because{a}\geqslant\mathrm{2} \\ $$ $$\therefore\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}>\mathrm{1} \\ $$ $$\therefore\:{f}_{{max}} ={f}\left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right) \\ $$ $${f}\left({x}\right)>\underset{{x}\rightarrow\mathrm{0},\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}>\mathrm{1} \\ $$ $${f}\left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right)\gtrless\mathrm{2} \\ $$ $$\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\gtrless\mathrm{2} \\ $$ $${let}\:{t}=\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}} \\ $$ $${then}\:{a}=\frac{\mathrm{8}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$ $$\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\gtrless\mathrm{2}\:\Leftrightarrow\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}}\gtrless\mathrm{4}\centerdot\frac{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} } \\ $$ $$\Leftrightarrow\mathrm{0}\gtrless\mathrm{3}{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} −\mathrm{9}{t}^{\mathrm{2}} +\mathrm{36} \\ $$ $$\Leftrightarrow\mathrm{0}\gtrless\mathrm{2}\left({t}−\mathrm{1}\right){t}^{\mathrm{3}} +\left({t}^{\mathrm{2}} −\mathrm{6}\right)^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{2}} \\ $$ $$\because{t}>\mathrm{1} \\ $$ $$\therefore\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}<\mathrm{2}\: \\ $$ $$\therefore{f}\left({x}\right)\leqslant{f}_{{max}} ={f}\left({x}_{\mathrm{1}} =\sqrt{\mathrm{8}/{a}}\right)<\mathrm{2} \\ $$ $$\because{f}\left({x}\right)>\underset{{x}\rightarrow\mathrm{0},\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}>\mathrm{1} \\ $$ $$\therefore\:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$ $$ \\ $$ $${case}\:{B}:\:\mathrm{0}<{a}<\mathrm{2} \\ $$ $${f}^{'} \left({x}_{\mathrm{2},\mathrm{3}} \right)=\mathrm{0}\:\:\Rightarrow\:{x}_{\mathrm{2},\mathrm{3}} ^{\mathrm{2}} +\frac{\mathrm{8}}{{a}}\left(\mathrm{3}−\frac{\mathrm{8}}{{a}}\right){x}_{\mathrm{2},\mathrm{3}} +\frac{\mathrm{8}}{{a}}=\mathrm{0} \\ $$ $$\Rightarrow{x}_{\mathrm{2}} {x}_{\mathrm{3}} =\frac{\mathrm{8}}{{a}} \\ $$ $$\because{x}_{\mathrm{1}} =\sqrt{\frac{\mathrm{8}}{{a}}} \\ $$ $$\therefore{x}_{\mathrm{2}} <{x}_{\mathrm{1}} <{x}_{\mathrm{3}} \\ $$ $${x}_{\mathrm{2},\mathrm{3}} ^{\mathrm{2}} +\frac{\mathrm{8}}{{a}}\left(\mathrm{3}−\frac{\mathrm{8}}{{a}}\right){x}_{\mathrm{2},\mathrm{3}} +\frac{\mathrm{8}}{{a}}=\mathrm{0} \\ $$ $${let}\:{p}={x}_{\mathrm{2},\mathrm{3}} \\ $$ $$\left({ap}\right)^{\mathrm{2}} +\mathrm{8}\left(\mathrm{3}{a}−\mathrm{8}\right){p}+\mathrm{8}{a}=\mathrm{0}\:\Rightarrow \\ $$ $$\left({ap}+\mathrm{8}\right)\left({ap}+{a}\right)=\left(\mathrm{8}+{a}\right)\left({ap}\right)+\mathrm{8}\left(\mathrm{8}−\mathrm{3}{a}\right){p}\:\Rightarrow \\ $$ $${a}\left({ap}+\mathrm{8}\right)\left({p}+\mathrm{1}\right)=\left({a}^{\mathrm{2}} −\mathrm{16}{a}+\mathrm{64}\right){p}\:\Rightarrow \\ $$ $$\frac{\mathrm{1}}{\mathrm{1}+{p}}\centerdot\frac{{ap}}{{ap}+\mathrm{8}}=\frac{{a}^{\mathrm{2}} }{\left(\mathrm{8}−{a}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$ $$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}_{\mathrm{2},\mathrm{3}} }}\centerdot\frac{\sqrt{{ax}_{\mathrm{2},\mathrm{3}} }}{\:\sqrt{{ax}_{\mathrm{2},\mathrm{3}} +\mathrm{8}}}=\frac{{a}}{\mathrm{8}−{a}}\:\:{due}\:{to}\:\mathrm{0}<{a}<\mathrm{2} \\ $$ $${let}\:{m}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}_{\mathrm{2},\mathrm{3}} }} \\ $$ $${and}\:{n}=\frac{\sqrt{{ax}_{\mathrm{2},\mathrm{3}} }}{\:\sqrt{{ax}_{\mathrm{2},\mathrm{3}} +\mathrm{8}}} \\ $$ $${then}\:\begin{cases}{\left(\frac{\mathrm{1}}{{m}^{\mathrm{2}} }−\mathrm{1}\right)\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\mathrm{1}\right)=\frac{\mathrm{8}}{{a}}}\\{{mn}=\frac{{a}}{\mathrm{8}−{a}}}\end{cases}\:\Rightarrow \\ $$ $$\left({m}+{n}\right)^{\mathrm{2}} =\mathrm{1}+{mn}=\frac{\mathrm{8}}{\mathrm{8}−{a}}\:\Rightarrow \\ $$ $${m}+{n}=\sqrt{\frac{\mathrm{8}}{\mathrm{8}−{a}}} \\ $$ $${f}\left({x}_{\mathrm{2},\mathrm{3}} \right)\gtrless{f}\left({x}_{\mathrm{1}} \right)\:\Leftrightarrow\left(\:{m}+{n}\right)\gtrless\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}} \\ $$ $$\Leftrightarrow\:\sqrt{\frac{\mathrm{8}}{\mathrm{8}−{a}}}\gtrless\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}} \\ $$ $$\Leftrightarrow\:\frac{\sqrt{\mathrm{8}}}{\:\sqrt{\left(\sqrt{\mathrm{8}}−\sqrt{{a}}\right)\left(\sqrt{\mathrm{8}}+\sqrt{{a}}\right)}}\gtrless\frac{\mathrm{2}\sqrt{\sqrt{{a}}}}{\:\sqrt{\left(\sqrt{\mathrm{8}}+\sqrt{{a}}\right)}} \\ $$ $$\Leftrightarrow\:\sqrt{\mathrm{8}}\gtrless\sqrt{\mathrm{4}\sqrt{{a}}\centerdot\left(\sqrt{\mathrm{8}}−\sqrt{{a}}\right)} \\ $$ $$\Leftrightarrow\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \gtrless\mathrm{2}\sqrt{\mathrm{2}}\sqrt{{a}}−\left(\sqrt{{a}}\right)^{\mathrm{2}} \\ $$ $$\Leftrightarrow\:\left(\sqrt{{a}}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \gtrless\mathrm{0} \\ $$ $$\because\left(\sqrt{{a}}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} >\mathrm{0} \\ $$ $$\therefore\:{f}\left({x}_{\mathrm{2},\mathrm{3}} \right)>{f}\left({x}_{\mathrm{1}} \right) \\ $$ $${f}_{{max}} ={max}\left\{{f}\left({x}_{\mathrm{2}} \right),{f}\left({x}_{\mathrm{3}} \right)\right\}\gtrless\mathrm{2} \\ $$ $$\Leftrightarrow\left(\:{m}+{n}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\right)\gtrless\mathrm{2} \\ $$ $$\Leftrightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\frac{\mathrm{8}}{\mathrm{8}−{a}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\right)\gtrless\mathrm{1} \\ $$ $$\because\:\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\frac{\mathrm{8}}{\mathrm{8}−{a}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\right)\leqslant\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{8}}{\mathrm{8}−{a}}\right)+\frac{\mathrm{1}}{\mathrm{1}+{a}}} \\ $$ $$\therefore\:{f}_{{max}} ={max}\left\{{f}\left({x}_{\mathrm{2}} \right),{f}\left({x}_{\mathrm{3}} \right)\right\}\gtrless\mathrm{2} \\ $$ $$\Leftrightarrow\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{8}}{\mathrm{8}−{a}}\right)+\frac{\mathrm{1}}{\mathrm{1}+{a}}}\gtrless\mathrm{1} \\ $$ $$\Leftrightarrow\:\mathrm{0}\gtrless{a}\left(\mathrm{7}−\mathrm{2}{a}\right) \\ $$ $$\because\:\mathrm{0}<{a}<\mathrm{2} \\ $$ $$\therefore\:\mathrm{0}<{a}\left(\mathrm{7}−\mathrm{2}{a}\right) \\ $$ $$\therefore\:{f}_{{max}} ={max}\left\{{f}\left({x}_{\mathrm{2}} \right),{f}\left({x}_{\mathrm{3}} \right)\right\}<\mathrm{2} \\ $$ $${if}\:{f}\left({x}_{\mathrm{1}} \right)>\underset{{x}\rightarrow\mathrm{0},\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}>\mathrm{1} \\ $$ $$\:\:\:\:\:\:{then}\:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$ $${else}\:{f}_{{min}} ={f}\left({x}_{\mathrm{1}} \right) \\ $$ $${f}_{{min}} ={f}\left({x}_{\mathrm{1}} \right)\gtrless\mathrm{1} \\ $$ $$\Leftrightarrow\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}\gtrless\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\right) \\ $$ $${make}\:{Rt}\bigtriangleup\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{1}+{a}}}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} \\ $$ $$\therefore\:\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{1}+{a}}}>\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}} \\ $$ $${think}\:{of}\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}\gtrless\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{1}+{a}}} \\ $$ $$\Leftrightarrow\:\mathrm{3}{a}−\sqrt{\mathrm{8}}\sqrt{{a}}+\mathrm{4}\gtrless\mathrm{0} \\ $$ $$\Leftrightarrow\:\mathrm{2}{a}+\left(\sqrt{{a}}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}\sqrt{{a}}+\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\gtrless\mathrm{0} \\ $$ $$\Leftrightarrow\:\mathrm{2}{a}+\left(\sqrt{{a}}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\gtrless\mathrm{0} \\ $$ $$\because\:{a}>\mathrm{0} \\ $$ $$\therefore\:\mathrm{2}{a}+\left(\sqrt{{a}}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}>\mathrm{0} \\ $$ $${therefore}\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}+\sqrt{\frac{\mathrm{8}}{{a}}}}}>\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{1}+{a}}}>\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}} \\ $$ $${f}_{{min}} ={f}\left({x}_{\mathrm{1}} \right)>\mathrm{1} \\ $$ $${so}\:{in}\:{case}\:{B},\:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$ $$ \\ $$ $${Q}.{E}.{D} \\ $$ $$ \\ $$

Commented by1xx last updated on 21/Aug/20

Thank to have chance to learn from you.  I have finished a proof that is a little  bit complex. I think it can be improved  by merging your idea.

$${Thank}\:{to}\:{have}\:{chance}\:{to}\:{learn}\:{from}\:{you}. \\ $$ $${I}\:{have}\:{finished}\:{a}\:{proof}\:{that}\:{is}\:{a}\:{little} \\ $$ $${bit}\:{complex}.\:{I}\:{think}\:{it}\:{can}\:{be}\:{improved} \\ $$ $${by}\:{merging}\:{your}\:{idea}. \\ $$

Commented by1xx last updated on 21/Aug/20

we need to confirm :  (1+m)(−m^3 +m^2 +14m+8)>0  in case of −1<m<−2/3.  when m=−.99, can find   (1+m)(−m^3 +m^2 +14m+8)<0

$${we}\:{need}\:{to}\:{confirm}\:: \\ $$ $$\left(\mathrm{1}+{m}\right)\left(−{m}^{\mathrm{3}} +{m}^{\mathrm{2}} +\mathrm{14}{m}+\mathrm{8}\right)>\mathrm{0} \\ $$ $${in}\:{case}\:{of}\:−\mathrm{1}<{m}<−\mathrm{2}/\mathrm{3}. \\ $$ $${when}\:{m}=−.\mathrm{99},\:{can}\:{find} \\ $$ $$\:\left(\mathrm{1}+{m}\right)\left(−{m}^{\mathrm{3}} +{m}^{\mathrm{2}} +\mathrm{14}{m}+\mathrm{8}\right)<\mathrm{0} \\ $$ $$ \\ $$ $$ \\ $$

Answered by 1xx last updated on 20/Aug/20

in case ii (prove f(x)<2)  due to 0<m≤1 ???  pls note: m may be < zero.    in case i(prove f(x)>1),we can assume 0<m<1  but it is different in case ii(prove f(x)<2)

$${in}\:{case}\:{ii}\:\left({prove}\:{f}\left({x}\right)<\mathrm{2}\right) \\ $$ $$\boldsymbol{\mathrm{due}}\:\boldsymbol{\mathrm{to}}\:\mathrm{0}<\boldsymbol{\mathrm{m}}\leqslant\mathrm{1}\:??? \\ $$ $${pls}\:{note}:\:{m}\:{may}\:{be}\:<\:{zero}. \\ $$ $$ \\ $$ $${in}\:{case}\:{i}\left({prove}\:{f}\left({x}\right)>\mathrm{1}\right),{we}\:{can}\:{assume}\:\mathrm{0}<{m}<\mathrm{1} \\ $$ $${but}\:{it}\:{is}\:{different}\:{in}\:{case}\:{ii}\left({prove}\:{f}\left({x}\right)<\mathrm{2}\right) \\ $$

Commented by1549442205PVT last updated on 20/Aug/20

Above we limit only consider the   z+y<1⇒m=1−(z+y)>0  For ii) Thank you,i missed the case  .z+y>1.Please,  waiting for  i look at again.Corrected

$$\mathrm{Above}\:\mathrm{we}\:\mathrm{limit}\:\mathrm{only}\:\mathrm{consider}\:\mathrm{the}\: \\ $$ $$\mathrm{z}+\mathrm{y}<\mathrm{1}\Rightarrow\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)>\mathrm{0} \\ $$ $$\left.\mathrm{For}\:\mathrm{ii}\right)\:\mathrm{Thank}\:\mathrm{you},\mathrm{i}\:\mathrm{missed}\:\mathrm{the}\:\mathrm{case} \\ $$ $$.\mathrm{z}+\mathrm{y}>\mathrm{1}.\mathrm{Please}, \\ $$ $$\mathrm{waiting}\:\mathrm{for}\:\:\mathrm{i}\:\mathrm{look}\:\mathrm{at}\:\mathrm{again}.\mathrm{Corrected} \\ $$

Commented by1xx last updated on 20/Aug/20

    for the same reason, please consider  zy<1/4 ??? in case ii(prove f(x)<2)

$$ \\ $$ $$ \\ $$ $${for}\:{the}\:{same}\:{reason},\:{please}\:{consider} \\ $$ $${zy}<\mathrm{1}/\mathrm{4}\:???\:{in}\:{case}\:{ii}\left({prove}\:{f}\left({x}\right)<\mathrm{2}\right) \\ $$

Commented by1xx last updated on 20/Aug/20

in case of △_H <0, we need to prove 9m^2 +18m+8>0   9m^2 +18m+8=9(m^2 +2m+1)−1  =9(m+1)^2 −1  ⇔∣m+1∣>(1/3)  but ∣m∣≤1, only!  Q.E.D. is not achieved.  Very happy to discuss with you.  ps: 0<zy≤(((z^2 +y^2 )/2))≤1 or 0<zy≤(((z+y)/2))^2 ≤1

$${in}\:{case}\:{of}\:\bigtriangleup_{{H}} <\mathrm{0},\:{we}\:{need}\:{to}\:{prove}\:\mathrm{9}{m}^{\mathrm{2}} +\mathrm{18}{m}+\mathrm{8}>\mathrm{0}\: \\ $$ $$\mathrm{9}{m}^{\mathrm{2}} +\mathrm{18}{m}+\mathrm{8}=\mathrm{9}\left({m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{1}\right)−\mathrm{1} \\ $$ $$=\mathrm{9}\left({m}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1} \\ $$ $$\Leftrightarrow\mid{m}+\mathrm{1}\mid>\frac{\mathrm{1}}{\mathrm{3}} \\ $$ $${but}\:\mid{m}\mid\leqslant\mathrm{1},\:{only}! \\ $$ $${Q}.{E}.{D}.\:{is}\:{not}\:{achieved}. \\ $$ $${Very}\:{happy}\:{to}\:{discuss}\:{with}\:{you}. \\ $$ $${ps}:\:\mathrm{0}<{zy}\leqslant\left(\frac{{z}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}\right)\leqslant\mathrm{1}\:{or}\:\mathrm{0}<{zy}\leqslant\left(\frac{{z}+{y}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\mathrm{1}\: \\ $$

Commented by1xx last updated on 20/Aug/20

  for i)), △_Q >0 need a proof in case of 0<zy<1/4  we should prove (d/dt)(△_Q )=0 have no root in (0,1/4)  or we have to consider min(△_Q )∧0

$$ \\ $$ $$\left.{f}\left.{or}\:{i}\right)\right),\:\bigtriangleup_{{Q}} >\mathrm{0}\:{need}\:{a}\:{proof}\:{in}\:{case}\:{of}\:\mathrm{0}<{zy}<\mathrm{1}/\mathrm{4} \\ $$ $${we}\:{should}\:{prove}\:\frac{{d}}{{dt}}\left(\bigtriangleup_{{Q}} \right)=\mathrm{0}\:{have}\:{no}\:{root}\:{in}\:\left(\mathrm{0},\mathrm{1}/\mathrm{4}\right) \\ $$ $${or}\:{we}\:{have}\:{to}\:{consider}\:{min}\left(\bigtriangleup_{{Q}} \right)\wedge\mathrm{0} \\ $$ $$ \\ $$

Commented by1549442205PVT last updated on 21/Aug/20

Don′t need to consider Δ because  kf(α)<0⇔Δ>0 and x_1 <α<x_2

$$\mathrm{Don}'\mathrm{t}\:\mathrm{need}\:\mathrm{to}\:\mathrm{consider}\:\Delta\:\mathrm{because} \\ $$ $$\mathrm{kf}\left(\alpha\right)<\mathrm{0}\Leftrightarrow\Delta>\mathrm{0}\:\mathrm{and}\:\mathrm{x}_{\mathrm{1}} <\alpha<\mathrm{x}_{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com