Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 108914 by 1549442205PVT last updated on 21/Aug/20

  Q108815(19/8/20)(unanswer)by 1x.x  Given f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8))))  x,a∈R;x,a>0.Prove that  1<f(x)<2  Solution:Put x=tan^2 A,a=tan^2 B(A,B∈[0,(π/2))  f(x)=cosA+cosB+((tanAtanB)/( (√(tan^2 Atan^2 B+8))))  =cosA+cosB+((sinAsinB)/( (√(8cos^2 Acos^2 B+sin^2 Asin^2 B))))  Put cosA=z,cosB=y(z,y∈(0,1])we have  f=z+y+((√((1−z^2 )(1−y^2 )))/( (√(8z^2 y^2 +(1−z^2 )(1−y^2 )))))  =z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))  i)First we prove f(x)>1  ⇔z+y+((√((1−z^2 )(1− y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))>1(1)  If z+y≥1 then the inequality(1) is  true.Consider z+y<1.Put  m=1−(z+y)⇔z+y=1−m(0<m≤1)  z^2 +y^2 =(z+y)^2 −2zy=(1−m)^2 −2zy  (1)⇔(((1−z^2 )(1−y^2 ))/(   9z^2 y^2 +1−(z^2 +y^2 )))>[1−(z+y)]^2   ⇔1+z^2 y^2 −(z^2 +y^2 )>[9z^2 y^2 +1−(z^2 +y^2 )]m^2   1+z^2 y^2 −[1−2m+m^2 −2zy]>[9z^2 y^2 +1−(1−2m+m^2 −2zy)]m^2   ⇔z^2 y^2 +2zy+2m−m^2 >(9z^2 y^2 +2zy+2m−m^2 )m^2   ⇔m^4 −m^2 (9z^2 y^2 +2zy+2m)+(z^2 y^2 +2zy+2m−m^2 )>0  We look at LHS as a quadratic polynomial  with respect to ♮im^2 ε defined on the interval(0;1)   and we denote by P(m).By the theorem  above the sign of quadratic poly.P(m)>0⇔   Δ_P =(9z^2 y^2 +2zy+2m)^2 −4(z^2 y^2 +2zy+2m−m^2 )<0  ⇔81z^4 y^4 +4z^2 y^2 +4m^2 +36z^3 y^3 +36mz^2 y^2 +8mzy−4(z^2 y^2 +2zy+2m−m^2 )<0  ⇔81z^4 y^4 +36z^3 y^3 +36mz^2 y^2 +8(m−1)zy+8m^2 −8m<0  ⇔8m^2 +(36z^2 y^2 +8zy−8)m+81z^4 y^4 +36z^3 y^3 −8zy<0(3)  We look at LHS (3) like as a quadratic  polynomial w.r.t ♮mε and denote by Q(m)  We has Q(0)=81(zy)^4 +36(zy)^3 −8zy  ≤81t/64+36t/16−8t=225t/64−8t<0  (due to 0< t=zy≤1/4 )  Q(1)=1+36(zy)^2 +8zy−8+81(zy)^4 +36(zy)^3 −8zy  =−7+36(zy)^2 +81(zy)^4 +36(zy)^3 ≤  −7+36/16+81/256+36/64<0 (due to zy≤1/4)  By the convert theorem above the sign  of the quadratic polynomial we infer  Q(m)>0 ∀m∈(0;1)which means P(m)  has Δ_P <0 ∀m∈(0;1)⇒the inequality (1)   proved  ii)Now we prove that f(x)<2  ⇔z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))<2(4)  ⇔(((1−z^2 )(1−y^2 ))/(9z^2 y^2 +1−(z^2 +y^2 )))<[2−(z+y)]^2   ⇔1+z^2 y^2 −(z^2 +y^2 )<[9z^2 y^2 +1−(z^2 +y^2 )](1+m)^2 (note  (1−m=z+y like as above we have  −1≤m=1−(z+y)<1 as 0<z+y≤2(∗))  ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )(1+2m+m^2 )  ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )+(9z^2 y^2 +2zy)(2m+m^2 )−m^4 +4m^2 >0  ⇔−m^4 +4m^2 +(9z^2 y^2 +2zy)(2m+m^2 )+8z^2 y^2 >0  ⇔(9m^2 +18m+8)(zy)^2 +2(m^2 +2m)zy−m^4 +4m^2 >0(4)  We look at  LHS like as a quadratic  polynomial w.r.t ♮zyε and denote by  H(t)(set t=zy,0<zy≤(((z+y)/2))≤1)  a)The case  9m^2 +18m+8>0   We consider the discriminant Δ_H ′of H(t)  Δ_H ′=(m^2 +2m)^2 +(9m^2 +18m+8)(m^4 −4m^2 )  =m^4 +4m^3 +4m^2 +9m^6 +18m^5 −28m^4 −72m^3 −32m^2   =9m^6 +18m^5 −27m^4 −68m^3 −28m^2   =m^2 (9m^4 +18m^3 −27m^2 −68m−28)  <0( due to ∣m∣≤1). Therefore,we   infer H(t)>0∀t∈(0;1]which means  the inequality (4)is  proved ,so f(x)<2  b)The case  9m^2 +18m+8 < 0    ⇔−1<m<−2/3 .We have   { ((H(0)=−m^4 +4m^2 =m^2 (4−m^2 )>0 )),((H(1)=−m^4 +15m^2 +22m+8=)),(((1+m)(−m^3 +m^2 +14m+8)>0)) :}  By the convert theorem above the sign  of the quadratic polynomial we infer  H(t)>0 ∀t=zy∈(0;1)⇒(4)is proved  which means we ger f(2)<2  other way:  Similar to the case i)Rewrite H(t) in   the form H(m^2 )as the quadratic poly.  w.r.t ♮m^2 ε with the highest efficient  k=(−1)we get H(0)>0,H(1)>0  ⇒kH(0)<0,kH(1)<0⇒H(m)>0  ∀m^2 ∈[0,1]⇔m∈[−1,1]  From i)and ii)we obtain 1<f(x)<2(q.e.d)

Q108815(19/8/20)(unanswer)by1x.x Givenf(x)=11+x+11+a+axax+8 x,aR;x,a>0.Provethat 1<f(x)<2 Solution:Putx=tan2A,a=tan2B(A,B[0,π2) f(x)=cosA+cosB+tanAtanBtan2Atan2B+8 =cosA+cosB+sinAsinB8cos2Acos2B+sin2Asin2B PutcosA=z,cosB=y(z,y(0,1])wehave f=z+y+(1z2)(1y2)8z2y2+(1z2)(1y2) =z+y+(1z2)(1y2)9z2y2+1(z2+y2) i)Firstweprovef(x)>1 z+y+(1z2)(1y2)9z2y2+1(z2+y2)>1(1) Ifz+y1thentheinequality(1)is true.Considerz+y<1.Put m=1(z+y)z+y=1m(0<m1) z2+y2=(z+y)22zy=(1m)22zy (1)(1z2)(1y2)9z2y2+1(z2+y2)>[1(z+y)]2 1+z2y2(z2+y2)>[9z2y2+1(z2+y2)]m2 1+z2y2[12m+m22zy]>[9z2y2+1(12m+m22zy)]m2 z2y2+2zy+2mm2>(9z2y2+2zy+2mm2)m2 m4m2(9z2y2+2zy+2m)+(z2y2+2zy+2mm2)>0 WelookatLHSasaquadraticpolynomial withrespecttoim2εdefinedontheinterval(0;1) andwedenotebyP(m).Bythetheorem abovethesignofquadraticpoly.P(m)>0 ΔP=(9z2y2+2zy+2m)24(z2y2+2zy+2mm2)<0 81z4y4+4z2y2+4m2+36z3y3+36mz2y2+8mzy4(z2y2+2zy+2mm2)<0 81z4y4+36z3y3+36mz2y2+8(m1)zy+8m28m<0 8m2+(36z2y2+8zy8)m+81z4y4+36z3y38zy<0(3) WelookatLHS(3)likeasaquadratic polynomialw.r.tmεanddenotebyQ(m) WehasQ(0)=81(zy)4+36(zy)38zy 81t/64+36t/168t=225t/648t<0 (dueto0<t=zy1/4) Q(1)=1+36(zy)2+8zy8+81(zy)4+36(zy)38zy =7+36(zy)2+81(zy)4+36(zy)3 7+36/16+81/256+36/64<0(duetozy1/4) Bytheconverttheoremabovethesign ofthequadraticpolynomialweinfer Q(m)>0m(0;1)whichmeansP(m) hasΔP<0m(0;1)theinequality(1) proved ii)Nowweprovethatf(x)<2 z+y+(1z2)(1y2)9z2y2+1(z2+y2)<2(4) (1z2)(1y2)9z2y2+1(z2+y2)<[2(z+y)]2 1+z2y2(z2+y2)<[9z2y2+1(z2+y2)](1+m)2(note (1m=z+ylikeasabovewehave 1m=1(z+y)<1as0<z+y2()) z2y2+2zy+2mm2<(9z2y2+2zy+2mm2)(1+2m+m2) z2y2+2zy+2mm2<(9z2y2+2zy+2mm2)+(9z2y2+2zy)(2m+m2)m4+4m2>0 m4+4m2+(9z2y2+2zy)(2m+m2)+8z2y2>0 (9m2+18m+8)(zy)2+2(m2+2m)zym4+4m2>0(4) WelookatLHSlikeasaquadratic polynomialw.r.tzyεanddenoteby H(t)(sett=zy,0<zy(z+y2)1) a)Thecase9m2+18m+8>0 WeconsiderthediscriminantΔHofH(t) ΔH=(m2+2m)2+(9m2+18m+8)(m44m2) =m4+4m3+4m2+9m6+18m528m472m332m2 =9m6+18m527m468m328m2 =m2(9m4+18m327m268m28) <0(duetom∣⩽1).Therefore,we inferH(t)>0t(0;1]whichmeans theinequality(4)isproved,sof(x)<2 b)Thecase9m2+18m+8<0 1<m<2/3.Wehave {H(0)=m4+4m2=m2(4m2)>0H(1)=m4+15m2+22m+8=(1+m)(m3+m2+14m+8)>0 Bytheconverttheoremabovethesign ofthequadraticpolynomialweinfer H(t)>0t=zy(0;1)(4)isproved whichmeanswegerf(2)<2 otherway: Similartothecasei)RewriteH(t)in theformH(m2)asthequadraticpoly. w.r.tm2εwiththehighestefficient k=(1)wegetH(0)>0,H(1)>0 kH(0)<0,kH(1)<0H(m)>0 m2[0,1]m[1,1] Fromi)andii)weobtain1<f(x)<2(q.e.d)

Commented by1549442205PVT last updated on 21/Aug/20

Thank you,sir.You are welcome

Thankyou,sir.Youarewelcome

Commented by1xx last updated on 24/Aug/20

  f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8))))  x>0 , a>0  prove:1<f(x)<2  f^′ (x)=−((1/2))(1/((1+x)(√(1+x))))+(−(1/2))(1/((1+(8/(ax)))(√(1+(8/(ax))))))(8/a)(−(1/x^2 ))  f^′ (x)=0⇒(x^2 −(8/a))[x^2 +(8/a)(3−(8/a))x+(8/a)]=0  ∵x>0  ∴x_1 =(√(8/a))  △=[8/a(3−8/a)]^2 −4(8/a)≥0⇒a≤2  f^′ (x)=0⇒ { ((f^′ (x_1 =(√(8/a)))=0  a≥2)),((f^′ (x_1 =(√(8/a)))=f^′ (x_(2,3) )=0  a<2)) :}    case A: a≥2  f(x_1 =(√(8/a)))=(2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))  lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))  ∵a≥2  ∴(2/( (√(1+(√(8/a))))))>1  ∴ f_(max) =f(x_1 =(√(8/a)))  f(x)>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1  f(x_1 =(√(8/a)))≷2  (2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))≷2  let t=(√(1+(√(8/a))))  then a=(8/((t^2 −1)^2 ))  (2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))≷2 ⇔(((t^2 −1)^2 )/((t^2 −1)^2 +8))≷4∙(((t−1)^2 )/t^2 )  ⇔0≷3t^4 −2t^3 −9t^2 +36  ⇔0≷2(t−1)t^3 +(t^2 −6)^2 +3t^2   ∵t>1  ∴(2/( (√(1+(√(8/a))))))+(1/( (√(1+a))))<2   ∴f(x)≤f_(max) =f(x_1 =(√(8/a)))<2  ∵f(x)>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1  ∴ 1<f(x)<2    case B: 0<a<2  f^′ (x_(2,3) )=0  ⇒ x_(2,3) ^2 +(8/a)(3−(8/a))x_(2,3) +(8/a)=0  ⇒x_2 x_3 =(8/a)  ∵x_1 =(√(8/a))  ∴x_2 <x_1 <x_3   x_(2,3) ^2 +(8/a)(3−(8/a))x_(2,3) +(8/a)=0  let p=x_(2,3)   (ap)^2 +8(3a−8)p+8a=0 ⇒  (ap+8)(ap+a)=(8+a)(ap)+8(8−3a)p ⇒  a(ap+8)(p+1)=(a^2 −16a+64)p ⇒  (1/(1+p))∙((ap)/(ap+8))=(a^2 /((8−a)^2 )) ⇒  (1/( (√(1+x_(2,3) ))))∙((√(ax_(2,3) ))/( (√(ax_(2,3) +8))))=(a/(8−a))  due to 0<a<2  let m=(1/( (√(1+x_(2,3) ))))  and n=((√(ax_(2,3) ))/( (√(ax_(2,3) +8))))  then  { ((((1/m^2 )−1)((1/n^2 )−1)=(8/a))),((mn=(a/(8−a)))) :} ⇒  (m+n)^2 =1+mn=(8/(8−a)) ⇒  m+n=(√(8/(8−a)))  f(x_(2,3) )≷f(x_1 ) ⇔( m+n)≷(2/( (√(1+(√(8/a))))))  ⇔ (√(8/(8−a)))≷(2/( (√(1+(√(8/a))))))  ⇔ ((√8)/( (√(((√8)−(√a))((√8)+(√a))))))≷((2(√(√a)))/( (√(((√8)+(√a))))))  ⇔ (√8)≷(√(4(√a)∙((√8)−(√a))))  ⇔ ((√2))^2 ≷2(√2)(√a)−((√a))^2   ⇔ ((√a)−(√2))^2 ≷0  ∵((√a)−(√2))^2 >0  ∴ f(x_(2,3) )>f(x_1 )  f_(max) =max{f(x_2 ),f(x_3 )}≷2  ⇔( m+n+(1/( (√(1+a)))))≷2  ⇔ (1/2)((√(8/(8−a)))+(1/( (√(1+a)))))≷1  ∵ (1/2)((√(8/(8−a)))+(1/( (√(1+a)))))≤(√((1/2)((8/(8−a)))+(1/(1+a))))  ∴ f_(max) =max{f(x_2 ),f(x_3 )}≷2  ⇔ (√((1/2)((8/(8−a)))+(1/(1+a))))≷1  ⇔ 0≷a(7−2a)  ∵ 0<a<2  ∴ 0<a(7−2a)  ∴ f_(max) =max{f(x_2 ),f(x_3 )}<2  if f(x_1 )>lim_(x→0,∞) f(x)=1+(1/( (√(1+a))))>1        then 1<f(x)<2  else f_(min) =f(x_1 )  f_(min) =f(x_1 )≷1  ⇔ (2/( (√(1+(√(8/a))))))≷(1−(1/( (√(1+a)))))  make Rt△ ((1/( (√(1+a)))))^2 +(((√a)/( (√(1+a)))))^2 =1^2   ∴ ((√a)/( (√(1+a))))>1−(1/( (√(1+a))))  think of (2/( (√(1+(√(8/a))))))≷((√a)/( (√(1+a))))  ⇔ 3a−(√8)(√a)+4≷0  ⇔ 2a+((√a))^2 −2(√2)(√a)+((√2))^2 +2≷0  ⇔ 2a+((√a)−(√2))^2 +2≷0  ∵ a>0  ∴ 2a+((√a)−(√2))^2 +2>0  therefore (2/( (√(1+(√(8/a))))))>((√a)/( (√(1+a))))>1−(1/( (√(1+a))))  f_(min) =f(x_1 )>1  so in case B, 1<f(x)<2    Q.E.D

f(x)=11+x+11+a+axax+8 x>0,a>0 prove:1<f(x)<2 f(x)=(12)1(1+x)1+x+(12)1(1+8ax)1+8ax(8/a)(1x2) f(x)=0(x28a)[x2+8a(38a)x+8a]=0 x>0 x1=8/a =[8/a(38/a)]24(8/a)0a2 f(x)=0{f(x1=8/a)=0a2f(x1=8/a)=f(x2,3)=0a<2 caseA:a2 f(x1=8/a)=21+8a+11+a limx0,f(x)=1+11+a a2 21+8a>1 fmax=f(x1=8/a) f(x)>limx0,f(x)=1+11+a>1 f(x1=8/a)2 21+8a+11+a2 lett=1+8a thena=8(t21)2 21+8a+11+a2(t21)2(t21)2+84(t1)2t2 03t42t39t2+36 02(t1)t3+(t26)2+3t2 t>1 21+8a+11+a<2 f(x)fmax=f(x1=8/a)<2 f(x)>limx0,f(x)=1+11+a>1 1<f(x)<2 caseB:0<a<2 f(x2,3)=0x2,32+8a(38a)x2,3+8a=0 x2x3=8a x1=8a x2<x1<x3 x2,32+8a(38a)x2,3+8a=0 letp=x2,3 (ap)2+8(3a8)p+8a=0 (ap+8)(ap+a)=(8+a)(ap)+8(83a)p a(ap+8)(p+1)=(a216a+64)p 11+papap+8=a2(8a)2 11+x2,3ax2,3ax2,3+8=a8adueto0<a<2 letm=11+x2,3 andn=ax2,3ax2,3+8 then{(1m21)(1n21)=8amn=a8a (m+n)2=1+mn=88a m+n=88a f(x2,3)f(x1)(m+n)21+8a 88a21+8a 8(8a)(8+a)2a(8+a) 84a(8a) (2)222a(a)2 (a2)20 (a2)2>0 f(x2,3)>f(x1) fmax=max{f(x2),f(x3)}2 (m+n+11+a)2 12(88a+11+a)1 12(88a+11+a)12(88a)+11+a fmax=max{f(x2),f(x3)}2 12(88a)+11+a1 0a(72a) 0<a<2 0<a(72a) fmax=max{f(x2),f(x3)}<2 iff(x1)>limx0,f(x)=1+11+a>1 then1<f(x)<2 elsefmin=f(x1) fmin=f(x1)1 21+8a(111+a) makeRt(11+a)2+(a1+a)2=12 a1+a>111+a thinkof21+8aa1+a 3a8a+40 2a+(a)222a+(2)2+20 2a+(a2)2+20 a>0 2a+(a2)2+2>0 therefore21+8a>a1+a>111+a fmin=f(x1)>1 soincaseB,1<f(x)<2 Q.E.D

Commented by1xx last updated on 21/Aug/20

Thank to have chance to learn from you.  I have finished a proof that is a little  bit complex. I think it can be improved  by merging your idea.

Thanktohavechancetolearnfromyou. Ihavefinishedaproofthatisalittle bitcomplex.Ithinkitcanbeimproved bymergingyouridea.

Commented by1xx last updated on 21/Aug/20

we need to confirm :  (1+m)(−m^3 +m^2 +14m+8)>0  in case of −1<m<−2/3.  when m=−.99, can find   (1+m)(−m^3 +m^2 +14m+8)<0

weneedtoconfirm: (1+m)(m3+m2+14m+8)>0 incaseof1<m<2/3. whenm=.99,canfind (1+m)(m3+m2+14m+8)<0

Answered by 1xx last updated on 20/Aug/20

in case ii (prove f(x)<2)  due to 0<m≤1 ???  pls note: m may be < zero.    in case i(prove f(x)>1),we can assume 0<m<1  but it is different in case ii(prove f(x)<2)

incaseii(provef(x)<2) dueto0<m1??? plsnote:mmaybe<zero. incasei(provef(x)>1),wecanassume0<m<1 butitisdifferentincaseii(provef(x)<2)

Commented by1549442205PVT last updated on 20/Aug/20

Above we limit only consider the   z+y<1⇒m=1−(z+y)>0  For ii) Thank you,i missed the case  .z+y>1.Please,  waiting for  i look at again.Corrected

Abovewelimitonlyconsiderthe z+y<1m=1(z+y)>0 Forii)Thankyou,imissedthecase .z+y>1.Please, waitingforilookatagain.Corrected

Commented by1xx last updated on 20/Aug/20

    for the same reason, please consider  zy<1/4 ??? in case ii(prove f(x)<2)

forthesamereason,pleaseconsider zy<1/4???incaseii(provef(x)<2)

Commented by1xx last updated on 20/Aug/20

in case of △_H <0, we need to prove 9m^2 +18m+8>0   9m^2 +18m+8=9(m^2 +2m+1)−1  =9(m+1)^2 −1  ⇔∣m+1∣>(1/3)  but ∣m∣≤1, only!  Q.E.D. is not achieved.  Very happy to discuss with you.  ps: 0<zy≤(((z^2 +y^2 )/2))≤1 or 0<zy≤(((z+y)/2))^2 ≤1

incaseofH<0,weneedtoprove9m2+18m+8>0 9m2+18m+8=9(m2+2m+1)1 =9(m+1)21 ⇔∣m+1∣>13 butm∣⩽1,only! Q.E.D.isnotachieved. Veryhappytodiscusswithyou. ps:0<zy(z2+y22)1or0<zy(z+y2)21

Commented by1xx last updated on 20/Aug/20

  for i)), △_Q >0 need a proof in case of 0<zy<1/4  we should prove (d/dt)(△_Q )=0 have no root in (0,1/4)  or we have to consider min(△_Q )∧0

fori)),Q>0needaproofincaseof0<zy<1/4 weshouldproveddt(Q)=0havenorootin(0,1/4) orwehavetoconsidermin(Q)0

Commented by1549442205PVT last updated on 21/Aug/20

Don′t need to consider Δ because  kf(α)<0⇔Δ>0 and x_1 <α<x_2

DontneedtoconsiderΔbecause kf(α)<0Δ>0andx1<α<x2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com