Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 108920 by mathdave last updated on 20/Aug/20

Answered by 1549442205PVT last updated on 20/Aug/20

I=∫_0 ^(π/(12)) ln(tanx)dx.Put tanx =t  ⇒dt=(1+t^2 )dx⇒I=∫_0 ^( 2−(√3)) ((ln(t))/(1+t^2 ))dt  =∫_0 ^( 2−(√3)) ln(t)(Σ_(k=0) ^(∞) (−1)^k x^(2k) )dt=  =Σ_(k=0) ^(∞) (−1)^k ∫_0 ^( 2−(√3)) x^(2k) ln(t)dt=Σ_(k=0) ^(∞) (−1)^k A_k   A_k =∫_0 ^( 2−(√3)) x^(2k) ln(t)dt   =     [_(by parts     ) (x^(2k+1) /(2k+1))ln(t)]_0 ^(2−(√3)) −(1/(2k+1))∫_0 ^( 2−(√3)) x^(2k) dt  =((ln(2−(√3))(2−(√3))^(2k+1) )/(2k+1))−  [(1/(2k+1)).(x^(2k+1) /(2k+1))]_0 ^(2−(√3))   =((ln(2−(√3))(2−(√3))^(2k+1) )/(2k+1))−(1/((2k+1)^2 ))×(2−(√3))^(2k+1)   I=Σ_(k=0) ^(∞) (−1)^k A_k =Σ_(k=0) ^(∞) (−1)^k [((ln(2−(√3))(2−(√3))^(2k+1) )/(2k+1))−(1/((2k+1)^2 ))×(2−(√3))^(2k+1) ]  =Σ_(k=0) ^(∞) (−1)^k [2−(√3))^(2k+1) ((((2k+1)ln(2−(√3))−1)/((2k+1)^2 )))  Since G=Σ_(k=1) ^(∞) (−1)^k (1/((2k+1)^2 )),we need   to prove that:  [2−(√3))^(2k+1) ((((2k+1)ln(2−(√3))−1)/((2k+1)^2 )))=(2/3)×(1/((2k+1)^2 ))  ⇔[(2k+1)ln(2−(√3))−1]×(2−(√3))^(2k+1)   =((−2)/3) ?.....

I=0π12ln(tanx)dx.Puttanx=tdt=(1+t2)dxI=023ln(t)1+t2dt=023ln(t)(Σk=0(1)kx2k)dt==Σk=0(1)k023x2kln(t)dt=Σk=0(1)kAkExtra \left or missing \right=ln(23)(23)2k+12k+1[12k+1.x2k+12k+1]023=ln(23)(23)2k+12k+11(2k+1)2×(23)2k+1I=Σk=0(1)kAk=Σk=0(1)k[ln(23)(23)2k+12k+11(2k+1)2×(23)2k+1]=Σk=0(1)k[23)2k+1((2k+1)ln(23)1(2k+1)2)SinceG=Σk=1(1)k1(2k+1)2,weneedtoprovethat:[23)2k+1((2k+1)ln(23)1(2k+1)2)=23×1(2k+1)2[(2k+1)ln(23)1]×(23)2k+1=23?.....

Commented by mathdave last updated on 20/Aug/20

u try iwill send my solution as well

utryiwillsendmysolutionaswell

Answered by mathdave last updated on 20/Aug/20

solution  to show that ∫_0 ^(π/(12)) ln(tanx)dx=−(2/3)G  recall to lemma (2) theorem which state   ∫_0 ^(π/4) ln(tanx)dx=2∫_0 ^(π/(12)) ln(tan3x)dy  by let y=3x   and dx=(1/3)dy  (2/3)∫_0 ^(π/4) ln(tany)dy=∫_0 ^(π/4) ln(tanx)dx  let  t=tany  and  dy=(dt/(1+t^2 ))  ∵∫_0 ^(π/4) ln(tanx)dx=(2/3)∫_0 ^1 ((lnt)/(1+t^2 ))dt  but the series of (1/(1+t^2 ))=(−1)^n Σ_(n=0) ^∞ t^(2n)   =(2/3)∫_0 ^1 (−1)^n Σ_(n=0) ^∞ t^(2n) lnt  using feynmann trick   (d/da)∣_(a=1) I=(2/3)•(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 t^(2n) .t^(a−1) dt=(2/3)•(−1)^n Σ_(n=0) ^∞ (1/((2n+a)))  (d/da)∣_(a=1) I=−(2/3)•Σ_(n=0) ^∞ (((−1)^n )/((2n+a)^2 ))=−(2/3)•Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))  but Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))=G   (call catalan constant)  ∵∫_0 ^(π/(12)) ln(tanx)dx=−(2/3)G                Q.E.D  by mathdave (20/08/2020)

solutiontoshowthat0π12ln(tanx)dx=23Grecalltolemma(2)theoremwhichstate0π4ln(tanx)dx=20π12ln(tan3x)dybylety=3xanddx=13dy230π4ln(tany)dy=0π4ln(tanx)dxlett=tanyanddy=dt1+t20π4ln(tanx)dx=2301lnt1+t2dtbuttheseriesof11+t2=(1)nn=0t2n=2301(1)nn=0t2nlntusingfeynmanntrickddaa=1I=23(1)nn=001t2n.ta1dt=23(1)nn=01(2n+a)ddaa=1I=23n=0(1)n(2n+a)2=23n=0(1)n(2n+1)2butn=0(1)n(2n+1)2=G(callcatalanconstant)0π12ln(tanx)dx=23GQ.E.Dbymathdave(20/08/2020)

Commented by 1549442205PVT last updated on 20/Aug/20

Thank you Sir.I think that just integrating   by parts obtain also above result   but don′t need to use feynmann′s trick ,  it seems becomes trouble more  However,Sir′s idea can using to solve  other problems

ThankyouSir.Ithinkthatjustintegratingbypartsobtainalsoaboveresultbutdontneedtousefeynmannstrick,itseemsbecomestroublemoreHowever,Sirsideacanusingtosolveotherproblems

Terms of Service

Privacy Policy

Contact: info@tinkutara.com