Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109029 by nimnim last updated on 20/Aug/20

Find the value(s) of a,b and c  if:  (x+a)(x+2020)+1=(x+b)(x+c)  where a,b and c are natural numbers.

$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{a},{b}\:{and}\:{c}\:\:{if}: \\ $$$$\left({x}+{a}\right)\left({x}+\mathrm{2020}\right)+\mathrm{1}=\left({x}+{b}\right)\left({x}+{c}\right) \\ $$$${where}\:{a},{b}\:{and}\:{c}\:{are}\:{natural}\:{numbers}. \\ $$

Answered by floor(10²Eta[1]) last updated on 21/Aug/20

x^2 +(2020+a)x+2020a+1=x^2 +(b+c)x+bc  ⇒2020+a=b+c  ⇒2020a+1=bc  a=b+c−2020  2020(b+c−2020)+1=bc  2020b+2020c−2020^2 +1=bc  bc−2020b−2020c+2020^2 =1  (b−2020)(c−2020)=1  the only ways we can factor 1 are  1.1 or (−1)(−1)  I case:  b−2020=1=c−2020  ⇒b=c=2021∴a=2022  II case:  b−2020=−1=c−2020  ⇒b=c=2019∴a=2018    so all solutions a, b, c are:  (2022, 2021, 2021), (2018, 2019, 2019)

$$\mathrm{x}^{\mathrm{2}} +\left(\mathrm{2020}+\mathrm{a}\right)\mathrm{x}+\mathrm{2020a}+\mathrm{1}=\mathrm{x}^{\mathrm{2}} +\left(\mathrm{b}+\mathrm{c}\right)\mathrm{x}+\mathrm{bc} \\ $$$$\Rightarrow\mathrm{2020}+\mathrm{a}=\mathrm{b}+\mathrm{c} \\ $$$$\Rightarrow\mathrm{2020a}+\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{a}=\mathrm{b}+\mathrm{c}−\mathrm{2020} \\ $$$$\mathrm{2020}\left(\mathrm{b}+\mathrm{c}−\mathrm{2020}\right)+\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{2020b}+\mathrm{2020c}−\mathrm{2020}^{\mathrm{2}} +\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{bc}−\mathrm{2020b}−\mathrm{2020c}+\mathrm{2020}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left(\mathrm{b}−\mathrm{2020}\right)\left(\mathrm{c}−\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{factor}\:\mathrm{1}\:\mathrm{are} \\ $$$$\mathrm{1}.\mathrm{1}\:\mathrm{or}\:\left(−\mathrm{1}\right)\left(−\mathrm{1}\right) \\ $$$$\mathrm{I}\:\mathrm{case}: \\ $$$$\mathrm{b}−\mathrm{2020}=\mathrm{1}=\mathrm{c}−\mathrm{2020} \\ $$$$\Rightarrow\mathrm{b}=\mathrm{c}=\mathrm{2021}\therefore\mathrm{a}=\mathrm{2022} \\ $$$$\mathrm{II}\:\mathrm{case}: \\ $$$$\mathrm{b}−\mathrm{2020}=−\mathrm{1}=\mathrm{c}−\mathrm{2020} \\ $$$$\Rightarrow\mathrm{b}=\mathrm{c}=\mathrm{2019}\therefore\mathrm{a}=\mathrm{2018} \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{are}: \\ $$$$\left(\mathrm{2022},\:\mathrm{2021},\:\mathrm{2021}\right),\:\left(\mathrm{2018},\:\mathrm{2019},\:\mathrm{2019}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 22/Aug/20

O_W ^W  !_! ^! , great!...Thanks floor Sir!

$$\underset{\mathrm{W}} {\overset{\mathrm{W}} {\mathrm{O}}}\:\underset{!} {\overset{!} {!}},\:{great}!...\mathcal{T}{hanks}\:{floor}\:\mathcal{S}{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com