Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 109082 by 1777 last updated on 21/Aug/20

prove that :  ∫_(−(π/2)) ^(−(π/4)) 2cos(x)+sin(x)dx≤∫_(−(π/2)) ^(−(π/4)) cos(x)−sin(x)dx

provethat:π2π42cos(x)+sin(x)dxπ2π4cos(x)sin(x)dx

Answered by malwan last updated on 21/Aug/20

−(π/2)<x<−(π/4)  ⇒0<cos x<((√2)/2)  ⇒0<2cos x<(√2)  −1<sin x<−((√2)/2)  ⇒2cos x + sin x<(√2)−((√2)/2)=((√2)/2)  cos x − sin x<((√2)/2) + ((√2)/2) = (√2)  ((√2)/2) < (√2)  ⇒2cos x − sin x<cos x−sin x  ∴ _(−(π/2)) ∫^(−(π/4)) (2cos x + sin x)dx <      _(−(π/2)) ∫^(−(π/4)) (cos x − sin x)dx

π2<x<π40<cosx<220<2cosx<21<sinx<222cosx+sinx<222=22cosxsinx<22+22=222<22cosxsinx<cosxsinxπ2π4(2cosx+sinx)dx<π2π4(cosxsinx)dx

Commented by 1777 last updated on 21/Aug/20

nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com