Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109090 by ajfour last updated on 21/Aug/20

Find all those roots of the equation   z^(12) −56z^6 −512=0  whose imaginary  part is positive.

$${Find}\:{all}\:{those}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\:\boldsymbol{{z}}^{\mathrm{12}} −\mathrm{56}\boldsymbol{{z}}^{\mathrm{6}} −\mathrm{512}=\mathrm{0}\:\:{whose}\:{imaginary} \\ $$$${part}\:{is}\:{positive}. \\ $$

Answered by floor(10²Eta[1]) last updated on 21/Aug/20

z^6 =y  y^2 −56y−512=0  y=((56±72)/2)=28±36⇒y=−8∨y=64  (1):z^6 =−8=8(cosπ+i.sinπ)  z=ρ(cosθ+i.sinθ)⇒z^6 =ρ^6 (cos(6θ)+i.sin(6θ))=8(cosπ+i.sinπ)  ⇒ρ=(√2)  ⇒cos(6θ)=cosπ∴6θ=π+2kπ⇒θ_k =((π+2kπ)/6), 0≤k<6  ⇒sin(6θ)=sinπ∴θ_k =((π+2kπ)/6), 0≤k<6  ⇒z_k =(√2)(cosθ_k +i.sinθ_k )  z_0 =(((√6)+i(√2))/2)∧z_1 =i(√2)∧z_2 =((−(√6)+i(√2))/2)  z_3 =((−(√6)−i(√2))/2)∧z_4 =−i(√2)∧z_5 =(((√6)−i(√2))/2)  (2):z^6 =64=64(cos(2π)+i.sin(2π))  θ_k =((2kπ)/6), 0≤k<6  z_k =2(cosθ_k +i.sinθ_k )  z_0 =2∧z_1 =1+i(√3)∧z_2 =−1+i(√3)  z_3 =−2∧z_4 =−1−i(√3)∧z_5 =1−i(√3)  so the roots that have the im. positive are:  (((√6)+i(√2))/2), i(√2), ((−6+i(√2))/2), 1+i(√3), −1+i(√3)

$$\mathrm{z}^{\mathrm{6}} =\mathrm{y} \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{56y}−\mathrm{512}=\mathrm{0} \\ $$$$\mathrm{y}=\frac{\mathrm{56}\pm\mathrm{72}}{\mathrm{2}}=\mathrm{28}\pm\mathrm{36}\Rightarrow\mathrm{y}=−\mathrm{8}\vee\mathrm{y}=\mathrm{64} \\ $$$$\left(\mathrm{1}\right):\mathrm{z}^{\mathrm{6}} =−\mathrm{8}=\mathrm{8}\left(\mathrm{cos}\pi+\mathrm{i}.\mathrm{sin}\pi\right) \\ $$$$\mathrm{z}=\rho\left(\mathrm{cos}\theta+\mathrm{i}.\mathrm{sin}\theta\right)\Rightarrow\mathrm{z}^{\mathrm{6}} =\rho^{\mathrm{6}} \left(\mathrm{cos}\left(\mathrm{6}\theta\right)+\mathrm{i}.\mathrm{sin}\left(\mathrm{6}\theta\right)\right)=\mathrm{8}\left(\mathrm{cos}\pi+\mathrm{i}.\mathrm{sin}\pi\right) \\ $$$$\Rightarrow\rho=\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{cos}\left(\mathrm{6}\theta\right)=\mathrm{cos}\pi\therefore\mathrm{6}\theta=\pi+\mathrm{2k}\pi\Rightarrow\theta_{\mathrm{k}} =\frac{\pi+\mathrm{2k}\pi}{\mathrm{6}},\:\mathrm{0}\leqslant\mathrm{k}<\mathrm{6} \\ $$$$\Rightarrow\mathrm{sin}\left(\mathrm{6}\theta\right)=\mathrm{sin}\pi\therefore\theta_{\mathrm{k}} =\frac{\pi+\mathrm{2k}\pi}{\mathrm{6}},\:\mathrm{0}\leqslant\mathrm{k}<\mathrm{6} \\ $$$$\Rightarrow\mathrm{z}_{\mathrm{k}} =\sqrt{\mathrm{2}}\left(\mathrm{cos}\theta_{\mathrm{k}} +\mathrm{i}.\mathrm{sin}\theta_{\mathrm{k}} \right) \\ $$$$\mathrm{z}_{\mathrm{0}} =\frac{\sqrt{\mathrm{6}}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}}\wedge\mathrm{z}_{\mathrm{1}} =\mathrm{i}\sqrt{\mathrm{2}}\wedge\mathrm{z}_{\mathrm{2}} =\frac{−\sqrt{\mathrm{6}}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{3}} =\frac{−\sqrt{\mathrm{6}}−\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}}\wedge\mathrm{z}_{\mathrm{4}} =−\mathrm{i}\sqrt{\mathrm{2}}\wedge\mathrm{z}_{\mathrm{5}} =\frac{\sqrt{\mathrm{6}}−\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right):\mathrm{z}^{\mathrm{6}} =\mathrm{64}=\mathrm{64}\left(\mathrm{cos}\left(\mathrm{2}\pi\right)+\mathrm{i}.\mathrm{sin}\left(\mathrm{2}\pi\right)\right) \\ $$$$\theta_{\mathrm{k}} =\frac{\mathrm{2k}\pi}{\mathrm{6}},\:\mathrm{0}\leqslant\mathrm{k}<\mathrm{6} \\ $$$$\mathrm{z}_{\mathrm{k}} =\mathrm{2}\left(\mathrm{cos}\theta_{\mathrm{k}} +\mathrm{i}.\mathrm{sin}\theta_{\mathrm{k}} \right) \\ $$$$\mathrm{z}_{\mathrm{0}} =\mathrm{2}\wedge\mathrm{z}_{\mathrm{1}} =\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}\wedge\mathrm{z}_{\mathrm{2}} =−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}} \\ $$$$\mathrm{z}_{\mathrm{3}} =−\mathrm{2}\wedge\mathrm{z}_{\mathrm{4}} =−\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}\wedge\mathrm{z}_{\mathrm{5}} =\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{that}\:\mathrm{have}\:\mathrm{the}\:\mathrm{im}.\:\mathrm{positive}\:\mathrm{are}: \\ $$$$\frac{\sqrt{\mathrm{6}}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{i}\sqrt{\mathrm{2}},\:\frac{−\mathrm{6}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}},\:−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}} \\ $$

Commented by ajfour last updated on 21/Aug/20

(((√6)+i(√2))/2), i(√2), ((−(√6)+i(√2))/2), 1+i(√3), −1+i(√3)  Yes Sir,  thanks plentifully!

$$\frac{\sqrt{\mathrm{6}}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{i}\sqrt{\mathrm{2}},\:\frac{−\sqrt{\mathrm{6}}+\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}},\:−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}} \\ $$$${Yes}\:{Sir},\:\:{thanks}\:{plentifully}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com