Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109160 by john santu last updated on 21/Aug/20

Find the equation of line through  the point of intersection of the  line x+3y−11=0 and 5x−4y+2=0  and perpendicular to 4x+2y+9=0.

$${Find}\:{the}\:{equation}\:{of}\:{line}\:{through} \\ $$$${the}\:{point}\:{of}\:{intersection}\:{of}\:{the} \\ $$$${line}\:{x}+\mathrm{3}{y}−\mathrm{11}=\mathrm{0}\:{and}\:\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}=\mathrm{0} \\ $$$${and}\:{perpendicular}\:{to}\:\mathrm{4}{x}+\mathrm{2}{y}+\mathrm{9}=\mathrm{0}. \\ $$

Answered by bemath last updated on 21/Aug/20

Answered by Dwaipayan Shikari last updated on 21/Aug/20

4x+2y+9=0⇒y=−2x−(9/2)  slope(m)=−2  mm_0 =−1  m_0 =(1/2)  x+3y−11+Ψ(5x−4y+2)=0  (1+5Ψ)x+(3−4Ψ)y+2Ψ−11=0  y=((1+5Ψ)/(4Ψ−3))x+11−2Ψ  m_0 =((1+5Ψ)/(4Ψ−3))=(1/2)⇒Ψ=−(5/6)  (1−((25)/6))x+(3+((20)/6))y−(5/3)−11=0  x−2y+4=0  y=(x/2)+2

$$\mathrm{4}{x}+\mathrm{2}{y}+\mathrm{9}=\mathrm{0}\Rightarrow{y}=−\mathrm{2}{x}−\frac{\mathrm{9}}{\mathrm{2}} \\ $$$${slope}\left({m}\right)=−\mathrm{2} \\ $$$${mm}_{\mathrm{0}} =−\mathrm{1} \\ $$$${m}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}+\mathrm{3}{y}−\mathrm{11}+\Psi\left(\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}+\mathrm{5}\Psi\right){x}+\left(\mathrm{3}−\mathrm{4}\Psi\right){y}+\mathrm{2}\Psi−\mathrm{11}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{1}+\mathrm{5}\Psi}{\mathrm{4}\Psi−\mathrm{3}}{x}+\mathrm{11}−\mathrm{2}\Psi \\ $$$${m}_{\mathrm{0}} =\frac{\mathrm{1}+\mathrm{5}\Psi}{\mathrm{4}\Psi−\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\Psi=−\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{25}}{\mathrm{6}}\right){x}+\left(\mathrm{3}+\frac{\mathrm{20}}{\mathrm{6}}\right){y}−\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{11}=\mathrm{0} \\ $$$${x}−\mathrm{2}{y}+\mathrm{4}=\mathrm{0} \\ $$$${y}=\frac{{x}}{\mathrm{2}}+\mathrm{2} \\ $$

Answered by Aziztisffola last updated on 21/Aug/20

x+3y−11=0⇒y=((11−x)/3)  5x−4y+2=0⇒y=((5x+2)/4)  ⇒((11−x)/3)=((5x+2)/4)⇒x=2 ⇒y=3  (x+3y−11=0)∩(5x−4y+2=0)=(2;3)  4x+2y+9=0 ⇒n^(→)  ((4),(2) ) vector normal  ⇒ax+by+c=0  ⇒2x−4y+c=0   2×2−4×3+c=0⇒c=8  ⇒ 2x−4y+8=0.  ⇒x−2y+4=0.

$${x}+\mathrm{3}{y}−\mathrm{11}=\mathrm{0}\Rightarrow{y}=\frac{\mathrm{11}−{x}}{\mathrm{3}} \\ $$$$\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}=\mathrm{0}\Rightarrow{y}=\frac{\mathrm{5}{x}+\mathrm{2}}{\mathrm{4}} \\ $$$$\Rightarrow\frac{\mathrm{11}−{x}}{\mathrm{3}}=\frac{\mathrm{5}{x}+\mathrm{2}}{\mathrm{4}}\Rightarrow{x}=\mathrm{2}\:\Rightarrow{y}=\mathrm{3} \\ $$$$\left({x}+\mathrm{3}{y}−\mathrm{11}=\mathrm{0}\right)\cap\left(\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}=\mathrm{0}\right)=\left(\mathrm{2};\mathrm{3}\right) \\ $$$$\mathrm{4}{x}+\mathrm{2}{y}+\mathrm{9}=\mathrm{0}\:\Rightarrow\overset{\rightarrow} {\mathrm{n}}\begin{pmatrix}{\mathrm{4}}\\{\mathrm{2}}\end{pmatrix}\:\mathrm{vector}\:\mathrm{normal} \\ $$$$\Rightarrow\mathrm{a}{x}+{by}+{c}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{x}−\mathrm{4}{y}+{c}=\mathrm{0} \\ $$$$\:\mathrm{2}×\mathrm{2}−\mathrm{4}×\mathrm{3}+\mathrm{c}=\mathrm{0}\Rightarrow\mathrm{c}=\mathrm{8} \\ $$$$\Rightarrow\:\mathrm{2}{x}−\mathrm{4}{y}+\mathrm{8}=\mathrm{0}. \\ $$$$\Rightarrow{x}−\mathrm{2}{y}+\mathrm{4}=\mathrm{0}. \\ $$

Answered by 1549442205PVT last updated on 22/Aug/20

Let the point of intersection of the  line x+3y−11=0 and 5x−4y+2=0  denoted by A.Then the coordintes  of A are root of the system   { ((5x−4y+2=0)),((x+3y−11=0)) :}⇔ { ((5x−4y+2=0 (1))),((5x+15y−55=0 (2))) :}  Subtracting (1) from (2) we get  19y−57=0⇒y=3,x=2⇒A(2;3)  The line d go through A and perpendicular  to the line 4x+2y+9=0 must have  the direction vector p^(→)  //n^(→) (4;2)  ⇒p^(→) =(2;1).Therefore ,the equation of  d is:((x−2)/2)=((y−3)/1)⇔x−2y+4=0  Thus,the line we need find has the  equation is (d):x−2y+4=0

$$\mathrm{Let}\:{the}\:{point}\:{of}\:{intersection}\:{of}\:{the} \\ $$$${line}\:{x}+\mathrm{3}{y}−\mathrm{11}=\mathrm{0}\:{and}\:\mathrm{5}{x}−\mathrm{4}{y}+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{denoted}\:\mathrm{by}\:\mathrm{A}.\mathrm{Then}\:\mathrm{the}\:\mathrm{coordintes} \\ $$$$\mathrm{of}\:\mathrm{A}\:\mathrm{are}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\mathrm{5x}−\mathrm{4y}+\mathrm{2}=\mathrm{0}}\\{\mathrm{x}+\mathrm{3y}−\mathrm{11}=\mathrm{0}}\end{cases}\Leftrightarrow\begin{cases}{\mathrm{5x}−\mathrm{4y}+\mathrm{2}=\mathrm{0}\:\left(\mathrm{1}\right)}\\{\mathrm{5x}+\mathrm{15y}−\mathrm{55}=\mathrm{0}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\mathrm{Subtracting}\:\left(\mathrm{1}\right)\:\mathrm{from}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{19y}−\mathrm{57}=\mathrm{0}\Rightarrow\mathrm{y}=\mathrm{3},\mathrm{x}=\mathrm{2}\Rightarrow\mathrm{A}\left(\mathrm{2};\mathrm{3}\right) \\ $$$$\mathrm{The}\:\mathrm{line}\:\mathrm{d}\:\mathrm{go}\:\mathrm{through}\:\mathrm{A}\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{4x}+\mathrm{2y}+\mathrm{9}=\mathrm{0}\:\mathrm{must}\:\mathrm{have} \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{vector}\:\overset{\rightarrow} {\mathrm{p}}\://\overset{\rightarrow} {\mathrm{n}}\left(\mathrm{4};\mathrm{2}\right) \\ $$$$\Rightarrow\overset{\rightarrow} {\mathrm{p}}=\left(\mathrm{2};\mathrm{1}\right).\mathrm{Therefore}\:,\mathrm{the}\:\mathrm{equation}\:\mathrm{of} \\ $$$$\mathrm{d}\:\mathrm{is}:\frac{\mathrm{x}−\mathrm{2}}{\mathrm{2}}=\frac{\mathrm{y}−\mathrm{3}}{\mathrm{1}}\Leftrightarrow\mathrm{x}−\mathrm{2y}+\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{line}\:\mathrm{we}\:\mathrm{need}\:\mathrm{find}\:\mathrm{has}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{is}\:\left(\boldsymbol{\mathrm{d}}\right):\boldsymbol{\mathrm{x}}−\mathrm{2}\boldsymbol{\mathrm{y}}+\mathrm{4}=\mathrm{0} \\ $$

Commented by peter frank last updated on 22/Aug/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com