Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109178 by Algoritm last updated on 21/Aug/20

Commented by Algoritm last updated on 21/Aug/20

mr W

$$\mathrm{mr}\:\mathrm{W} \\ $$

Answered by Dwaipayan Shikari last updated on 21/Aug/20

Commented by Algoritm last updated on 21/Aug/20

???

$$??? \\ $$

Commented by aurpeyz last updated on 21/Aug/20

wow. How do you get to think of this process?   i like it

$${wow}.\:{How}\:{do}\:{you}\:{get}\:{to}\:{think}\:{of}\:{this}\:{process}?\: \\ $$$${i}\:{like}\:{it} \\ $$

Commented by floor(10²Eta[1]) last updated on 22/Aug/20

he just used the AM-HM inequality and  the AM-GM inequality

$$\mathrm{he}\:\mathrm{just}\:\mathrm{used}\:\mathrm{the}\:\mathrm{AM}-\mathrm{HM}\:\mathrm{inequality}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{AM}-\mathrm{GM}\:\mathrm{inequality} \\ $$

Answered by 1549442205PVT last updated on 22/Aug/20

We have:  (x+y+z)((1/x)+(1/y)+(1/z))+((8xyz)/((x+y)(y+z)(z+x)))≥10  ⇔(((x+y+z)(xy+yz+zx))/(xyz))+((8xyz)/((x+y)(y+z)(z+x)))≥10(1)  First,we note some following identities:  (x+y)(y+z)(z+x)=(x+y+z)(xy+yz+zx)−xyz  Hence,The inequality (1) is equivalent to  (((x+y+z)(xy+yz+zx))/(xyz))+((8xyz)/((x+y+z)(xy+yz+zx)−xyz))≥10(2)  Since the nominator and denomirator  of each the fraction in the LHS are  in same degree (degree 3),WLOG we  can suppose that x+y+z=3(because  if x+y+z=m then put x=((am)/3),y=((bm)/3),  z=((cm)/3)⇒((am)/3)+((bm)/3)+((cm)/3)=m⇒a+b+c=3  and the inequality (2) becomes  (((m/3)^3 (a+b+c)(ab+bc+ca))/((m/3)^3 abc))+((8(m/3)^3 abc)/((m/3)^3 [(a+b+c)(ab+bc+ca)−abc]))≥10  ⇔(( (a+b+c)(ab+bc+ca))/(abc))+((8abc)/((a+b+c)(ab+bc+ca)−abc))≥10  which is also the inequality (2) but   under the condition a+b+c=3)  By that reason we have  (2)⇔((3(xy+yz+zx))/(xyz))+((8xyz)/(3(xy+yz+zx)−xyz))≥10  ⇔9(xy+yz+zx)^2 −3xyz(xy+yz+zx)  +18(xyz)^2 ≥10xyz[3(xy+yz+zx)−xyz]  ⇔9(xy+yz+zx)^2 +18(xyz)^2 ≥  33xyz(xy+yz+zx)(3)  Now we put xy=m,xz=n,yz=p.Then  3^2 =(x+y+z)^2 ≥3(xy+yz+zx)  ⇒m+n+p=xy+yz+zx≤3  3≥xy+yz+zx≥3^3 (√(xy.yz.zx))=3^3 (√((xyz)^2 ))  ⇒^3 (√(xyz)) ≤1,mnp≤(((m+m+p)/3))^3 ≤1(∗)  We have also (xyz)^2 =mnp.Therefore,  (3)⇔9(m+n+p)^2 +18mnp≥33(m+n+p)(√(mnp)) (3′)  Apply  Cauchy′s inequality for two  positive numbers we have  2(m+n+p)^2 +18mnp≥(√(2(m+n+p)^2 .8mnp))  =8(m+n+p)(√(mnp)) (i).On the other hands,  Since mnp≤1⇒(√(mnp)) ≤1(due to (∗))  ⇒mnp(√(mnp))=(√((mnp)^3 ))≤mnp  ⇒(√(mnp))≤^3 (√(mnp))    (∗∗).Now apply  Cauchy′s inequality for three positive  numbers we get:  m^2 +mn+mp≥3^3 (√(m^2 .mn.mp)) =3m^3 (√(mnp))  ≥3(√(mnp))   (due to (∗∗)).Similarly,  n^2 +nm+np≥3n(√(mnp))  p^2 +pn+pm≥3p(√(mnp))  Adding up three above inequalities  we get m^2 +n^2 +p^2 +2(mn+mp+np)  =(m+n+p)^2 ≥3(m+n+p)(√(mnp))  ⇒7(m+n+p)^3 ≥21(m+n+p)(√(mnp))(ii)  Adding up two inequalities (i)and(ii)  we get:  9(m+n+p)^2 +18mnp≥33(m+n+p)(√(mnp))  ,so the inequality (3′)is true which  implies that (2) is true .Consequently,  the inequality (1)is proved.Thus,we  proved the inequality:  (x+y+z)((1/x)+(1/y)+(1/z))+((8xyz)/((x+y)(y+z)(z+x)))≥10  The equality ocurrs if and only if  x=y=z (Q.E.D)

$$\mathrm{We}\:\mathrm{have}: \\ $$$$\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}+\frac{\mathrm{1}}{\mathrm{z}}\right)+\frac{\mathrm{8xyz}}{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{y}+\mathrm{z}\right)\left(\mathrm{z}+\mathrm{x}\right)}\geqslant\mathrm{10} \\ $$$$\Leftrightarrow\frac{\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)}{\mathrm{xyz}}+\frac{\mathrm{8xyz}}{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{y}+\mathrm{z}\right)\left(\mathrm{z}+\mathrm{x}\right)}\geqslant\mathrm{10}\left(\mathrm{1}\right) \\ $$$$\mathrm{First},\mathrm{we}\:\mathrm{note}\:\mathrm{some}\:\mathrm{following}\:\mathrm{identities}: \\ $$$$\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{y}+\mathrm{z}\right)\left(\mathrm{z}+\mathrm{x}\right)=\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)−\mathrm{xyz} \\ $$$$\mathrm{Hence},\mathrm{The}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{to} \\ $$$$\frac{\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)}{\mathrm{xyz}}+\frac{\mathrm{8xyz}}{\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)−\mathrm{xyz}}\geqslant\mathrm{10}\left(\mathrm{2}\right) \\ $$$$\mathrm{Since}\:\mathrm{the}\:\mathrm{nominator}\:\mathrm{and}\:\mathrm{denomirator} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{in}\:\mathrm{the}\:\mathrm{LHS}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{same}\:\mathrm{degree}\:\left(\mathrm{degree}\:\mathrm{3}\right),\mathrm{WLOG}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{suppose}\:\mathrm{that}\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3}\left(\mathrm{because}\right. \\ $$$$\mathrm{if}\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{m}\:\mathrm{then}\:\mathrm{put}\:\mathrm{x}=\frac{\mathrm{am}}{\mathrm{3}},\mathrm{y}=\frac{\mathrm{bm}}{\mathrm{3}}, \\ $$$$\mathrm{z}=\frac{\mathrm{cm}}{\mathrm{3}}\Rightarrow\frac{\mathrm{am}}{\mathrm{3}}+\frac{\mathrm{bm}}{\mathrm{3}}+\frac{\mathrm{cm}}{\mathrm{3}}=\mathrm{m}\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{2}\right)\:\mathrm{becomes} \\ $$$$\frac{\left(\mathrm{m}/\mathrm{3}\right)^{\mathrm{3}} \left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)}{\left(\mathrm{m}/\mathrm{3}\right)^{\mathrm{3}} \mathrm{abc}}+\frac{\mathrm{8}\left(\mathrm{m}/\mathrm{3}\right)^{\mathrm{3}} \mathrm{abc}}{\left(\mathrm{m}/\mathrm{3}\right)^{\mathrm{3}} \left[\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)−\mathrm{abc}\right]}\geqslant\mathrm{10} \\ $$$$\Leftrightarrow\frac{\:\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)}{\mathrm{abc}}+\frac{\mathrm{8abc}}{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)−\mathrm{abc}}\geqslant\mathrm{10} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{also}\:\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{2}\right)\:\mathrm{but}\: \\ $$$$\left.\mathrm{under}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}\right) \\ $$$$\mathrm{By}\:\mathrm{that}\:\mathrm{reason}\:\mathrm{we}\:\mathrm{have} \\ $$$$\left(\mathrm{2}\right)\Leftrightarrow\frac{\mathrm{3}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)}{\mathrm{xyz}}+\frac{\mathrm{8xyz}}{\mathrm{3}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)−\mathrm{xyz}}\geqslant\mathrm{10} \\ $$$$\Leftrightarrow\mathrm{9}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)^{\mathrm{2}} −\mathrm{3xyz}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$$$+\mathrm{18}\left(\mathrm{xyz}\right)^{\mathrm{2}} \geqslant\mathrm{10xyz}\left[\mathrm{3}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)−\mathrm{xyz}\right] \\ $$$$\Leftrightarrow\mathrm{9}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)^{\mathrm{2}} +\mathrm{18}\left(\mathrm{xyz}\right)^{\mathrm{2}} \geqslant \\ $$$$\mathrm{33xyz}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)\left(\mathrm{3}\right) \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{put}\:\mathrm{xy}=\mathrm{m},\mathrm{xz}=\mathrm{n},\mathrm{yz}=\mathrm{p}.\mathrm{Then} \\ $$$$\mathrm{3}^{\mathrm{2}} =\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)^{\mathrm{2}} \geqslant\mathrm{3}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$$$\Rightarrow\mathrm{m}+\mathrm{n}+\mathrm{p}=\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\leqslant\mathrm{3} \\ $$$$\mathrm{3}\geqslant\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\mathrm{xy}.\mathrm{yz}.\mathrm{zx}}=\mathrm{3}\:^{\mathrm{3}} \sqrt{\left(\mathrm{xyz}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:^{\mathrm{3}} \sqrt{\mathrm{xyz}}\:\leqslant\mathrm{1},\mathrm{mnp}\leqslant\left(\frac{\mathrm{m}+\mathrm{m}+\mathrm{p}}{\mathrm{3}}\right)^{\mathrm{3}} \leqslant\mathrm{1}\left(\ast\right) \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{also}\:\left(\mathrm{xyz}\right)^{\mathrm{2}} =\mathrm{mnp}.\mathrm{Therefore}, \\ $$$$\left(\mathrm{3}\right)\Leftrightarrow\mathrm{9}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{2}} +\mathrm{18mnp}\geqslant\mathrm{33}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)\sqrt{\mathrm{mnp}}\:\left(\mathrm{3}'\right) \\ $$$$\mathrm{Apply}\:\:\mathrm{Cauchy}'\mathrm{s}\:\mathrm{inequality}\:\mathrm{for}\:\mathrm{two} \\ $$$$\mathrm{positive}\:\mathrm{numbers}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{2}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{2}} +\mathrm{18mnp}\geqslant\sqrt{\mathrm{2}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{2}} .\mathrm{8mnp}} \\ $$$$=\mathrm{8}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)\sqrt{\mathrm{mnp}}\:\left(\mathrm{i}\right).\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands}, \\ $$$$\mathrm{Since}\:\mathrm{mnp}\leqslant\mathrm{1}\Rightarrow\sqrt{\mathrm{mnp}}\:\leqslant\mathrm{1}\left(\mathrm{due}\:\mathrm{to}\:\left(\ast\right)\right) \\ $$$$\Rightarrow\mathrm{mnp}\sqrt{\mathrm{mnp}}=\sqrt{\left(\mathrm{mnp}\right)^{\mathrm{3}} }\leqslant\mathrm{mnp} \\ $$$$\Rightarrow\sqrt{\mathrm{mnp}}\leqslant\:^{\mathrm{3}} \sqrt{\mathrm{mnp}}\:\:\:\:\left(\ast\ast\right).\mathrm{Now}\:\mathrm{apply} \\ $$$$\mathrm{Cauchy}'\mathrm{s}\:\mathrm{inequality}\:\mathrm{for}\:\mathrm{three}\:\mathrm{positive} \\ $$$$\mathrm{numbers}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{m}^{\mathrm{2}} +\mathrm{mn}+\mathrm{mp}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\mathrm{m}^{\mathrm{2}} .\mathrm{mn}.\mathrm{mp}}\:=\mathrm{3m}\:^{\mathrm{3}} \sqrt{\mathrm{mnp}} \\ $$$$\geqslant\mathrm{3}\sqrt{\mathrm{mnp}}\:\:\:\left(\mathrm{due}\:\mathrm{to}\:\left(\ast\ast\right)\right).\mathrm{Similarly}, \\ $$$$\mathrm{n}^{\mathrm{2}} +\mathrm{nm}+\mathrm{np}\geqslant\mathrm{3n}\sqrt{\mathrm{mnp}} \\ $$$$\mathrm{p}^{\mathrm{2}} +\mathrm{pn}+\mathrm{pm}\geqslant\mathrm{3p}\sqrt{\mathrm{mnp}} \\ $$$$\mathrm{Adding}\:\mathrm{up}\:\mathrm{three}\:\mathrm{above}\:\mathrm{inequalities} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{m}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} +\mathrm{p}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{mn}+\mathrm{mp}+\mathrm{np}\right) \\ $$$$=\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{2}} \geqslant\mathrm{3}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)\sqrt{\mathrm{mnp}} \\ $$$$\Rightarrow\mathrm{7}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{3}} \geqslant\mathrm{21}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)\sqrt{\mathrm{mnp}}\left(\mathrm{ii}\right) \\ $$$$\mathrm{Adding}\:\mathrm{up}\:\mathrm{two}\:\mathrm{inequalities}\:\left(\mathrm{i}\right)\mathrm{and}\left(\mathrm{ii}\right) \\ $$$$\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{9}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)^{\mathrm{2}} +\mathrm{18mnp}\geqslant\mathrm{33}\left(\mathrm{m}+\mathrm{n}+\mathrm{p}\right)\sqrt{\mathrm{mnp}} \\ $$$$,\mathrm{so}\:\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{3}'\right)\mathrm{is}\:\mathrm{true}\:\mathrm{which} \\ $$$$\mathrm{implies}\:\mathrm{that}\:\left(\mathrm{2}\right)\:\mathrm{is}\:\mathrm{true}\:.\mathrm{Consequently}, \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\mathrm{is}\:\mathrm{proved}.\mathrm{Thus},\mathrm{we} \\ $$$$\mathrm{proved}\:\mathrm{the}\:\mathrm{inequality}: \\ $$$$\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}\right)\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}\right)+\frac{\mathrm{8}\boldsymbol{\mathrm{xyz}}}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\left(\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}\right)\left(\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{x}}\right)}\geqslant\mathrm{10} \\ $$$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{equality}}\:\boldsymbol{\mathrm{ocurrs}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{if}} \\ $$$$\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{z}}\:\left(\boldsymbol{\mathrm{Q}}.\boldsymbol{\mathrm{E}}.\boldsymbol{\mathrm{D}}\right)\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com