Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109214 by mathmax by abdo last updated on 22/Aug/20

calculateA_n = ∫_0 ^∞    (dx/((x^2 +n)(x^2  +2n)))  with n integr natural≥1

calculateAn=0dx(x2+n)(x2+2n)withnintegrnatural1

Answered by mathmax by abdo last updated on 22/Aug/20

2A_n =∫_(−∞) ^(+∞)  (dx/((x^2 +n)(x^2  +2n)))  let ϕ(z) =(1/((z^2 +n)(z^2  +2n))) ⇒  ϕ(z) =(1/((z−i(√n))(z+i(√n))(z−i(√(2n)))(z+i(√(2n))))) residus theorem ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,i(√n)) +Res(ϕ,−i(√n))}  Res(ϕ,i(√n)) =(1/(2i(√n)(−n+2n))) =(1/(2in(√n)))  Res(ϕ,i(√(2n))) =(1/(2i(√(2n))(−2n+n))) =−(1/(2in(√(2n)))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(2in(√n)))−(1/(2in(√(2n))))} =(π/(n(√n))) −(π/(n(√2)(√n)))  =(π/(n(√n))){1−(1/(√2))} =((π((√2)−1))/(n(√(2n)))) ⇒ A_n =((π((√2)−1))/(2n(√(2n))))

2An=+dx(x2+n)(x2+2n)letφ(z)=1(z2+n)(z2+2n)φ(z)=1(zin)(z+in)(zi2n)(z+i2n)residustheorem+φ(z)dz=2iπ{Res(φ,in)+Res(φ,in)}Res(φ,in)=12in(n+2n)=12innRes(φ,i2n)=12i2n(2n+n)=12in2n+φ(z)dz=2iπ{12inn12in2n}=πnnπn2n=πnn{112}=π(21)n2nAn=π(21)2n2n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com