Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 109240 by bemath last updated on 22/Aug/20

  ((♭emath)/(•••••))  use cayley − hamilton theorem  to calculate A^(−1)  for A= (((1     2     2)),((1      2  −1)),((−1  1    4)) )

$$\:\:\frac{\flat{emath}}{\bullet\bullet\bullet\bullet\bullet} \\ $$$${use}\:{cayley}\:−\:{hamilton}\:{theorem} \\ $$$${to}\:{calculate}\:{A}^{−\mathrm{1}} \:{for}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\mathrm{2}\:\:−\mathrm{1}}\\{−\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{4}}\end{pmatrix} \\ $$

Answered by bobhans last updated on 22/Aug/20

    ((♭o♭hans)/(≤≥≡•°#))  the characteristic equation   λ^3 −(tr A)λ^2 + (((       minor )),((from diagonal)) ) λ−det(A)=0  λ^3 −9λ^2 + ( determinant (((2    −1)),((1       4)))+ determinant (((   1      2)),((−1    4)))+ determinant (((1   2)),((1   2))))λ−det(A)=0  λ^3 −9λ^2 +15λ−9=0  By Cayley − Hamilton theorem  A^3 −9A^2 +15A−9I=0  multiply both sides by A^(−1)   ⇒A^2 −9A+15I−9A^(−1) =0  9A^(−1) =A^2 −9A+15I  9A^(−1)  =  (((1       8      8)),((4       5  −4)),((−4   4    13)) ) − (((9     18    18)),((9      18    −9)),((−9   9     36)) ) + (((15    0      0)),((0       15    0)),((0        0    15)) )  9A^(−1) = ((( 7    −10     −10)),((−5       2            5)),((  5        −5        −8)) )  ∴ A^(−1) = (1/9) (((   7       −10       −10)),((−5          2                5)),((   5         −5           −8)) )

$$\:\:\:\:\frac{\flat{o}\flat{hans}}{\leqslant\geqslant\equiv\bullet°#} \\ $$$${the}\:{characteristic}\:{equation}\: \\ $$$$\lambda^{\mathrm{3}} −\left({tr}\:{A}\right)\lambda^{\mathrm{2}} +\begin{pmatrix}{\:\:\:\:\:\:\:{minor}\:}\\{{from}\:{diagonal}}\end{pmatrix}\:\lambda−{det}\left({A}\right)=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{9}\lambda^{\mathrm{2}} +\:\left(\begin{vmatrix}{\mathrm{2}\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\mathrm{4}}\end{vmatrix}+\begin{vmatrix}{\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\mathrm{4}}\end{vmatrix}+\begin{vmatrix}{\mathrm{1}\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\mathrm{2}}\end{vmatrix}\right)\lambda−{det}\left({A}\right)=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{9}\lambda^{\mathrm{2}} +\mathrm{15}\lambda−\mathrm{9}=\mathrm{0} \\ $$$${By}\:{Cayley}\:−\:{Hamilton}\:{theorem} \\ $$$${A}^{\mathrm{3}} −\mathrm{9}{A}^{\mathrm{2}} +\mathrm{15}{A}−\mathrm{9}{I}=\mathrm{0} \\ $$$${multiply}\:{both}\:{sides}\:{by}\:{A}^{−\mathrm{1}} \\ $$$$\Rightarrow{A}^{\mathrm{2}} −\mathrm{9}{A}+\mathrm{15}{I}−\mathrm{9}{A}^{−\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} ={A}^{\mathrm{2}} −\mathrm{9}{A}+\mathrm{15}{I} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\mathrm{8}}\\{\mathrm{4}\:\:\:\:\:\:\:\mathrm{5}\:\:−\mathrm{4}}\\{−\mathrm{4}\:\:\:\mathrm{4}\:\:\:\:\mathrm{13}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{9}\:\:\:\:\:\mathrm{18}\:\:\:\:\mathrm{18}}\\{\mathrm{9}\:\:\:\:\:\:\mathrm{18}\:\:\:\:−\mathrm{9}}\\{−\mathrm{9}\:\:\:\mathrm{9}\:\:\:\:\:\mathrm{36}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{15}\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{15}\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\mathrm{15}}\end{pmatrix} \\ $$$$\mathrm{9}{A}^{−\mathrm{1}} =\begin{pmatrix}{\:\mathrm{7}\:\:\:\:−\mathrm{10}\:\:\:\:\:−\mathrm{10}}\\{−\mathrm{5}\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\:\:\mathrm{5}\:\:\:\:\:\:\:\:−\mathrm{5}\:\:\:\:\:\:\:\:−\mathrm{8}}\end{pmatrix} \\ $$$$\therefore\:{A}^{−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{9}}\begin{pmatrix}{\:\:\:\mathrm{7}\:\:\:\:\:\:\:−\mathrm{10}\:\:\:\:\:\:\:−\mathrm{10}}\\{−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\:\:\:\mathrm{5}\:\:\:\:\:\:\:\:\:−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{8}}\end{pmatrix} \\ $$

Commented by john santu last updated on 22/Aug/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com