Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 109305 by peter frank last updated on 22/Aug/20

Answered by Aziztisffola last updated on 22/Aug/20

 let A(4;0) and P(x;y)∈C(o;2)  ⇒x^2 +y^2 =4 ⇒ y=+_− (√(4−x^2 ))   let I be center of [AP]   I(((x+4)/2);((√(4−x^2 ))/2))  ∧ I(((x+4)/2);−((√(4−x^2 ))/2))

$$\:\mathrm{let}\:\mathrm{A}\left(\mathrm{4};\mathrm{0}\right)\:\mathrm{and}\:\mathrm{P}\left({x};{y}\right)\in\mathscr{C}\left(\mathrm{o};\mathrm{2}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}\:\Rightarrow\:{y}=\underset{−} {+}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$$\:\mathrm{let}\:\mathrm{I}\:\mathrm{be}\:\mathrm{center}\:\mathrm{of}\:\left[\mathrm{AP}\right] \\ $$$$\:\mathrm{I}\left(\frac{{x}+\mathrm{4}}{\mathrm{2}};\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}}\right)\:\:\wedge\:\mathrm{I}\left(\frac{{x}+\mathrm{4}}{\mathrm{2}};−\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}}\right) \\ $$

Commented by Aziztisffola last updated on 22/Aug/20

$$ \\ $$$$ \\ $$

Answered by 1549442205PVT last updated on 22/Aug/20

P(x_1 ,y_1 )∈(O,2)⇒x_1 ^2 +y_1 ^2 =4⇒y_1 =±(√(4−x^2 ))  ⇒P(x_1 ,±(√(4−x_1 ^2 ))),I −midpoint of AP  (since by the hypothesis AI:AP=1:2)  since A(4,0),we have I(((x_1 +4)/2),((±(√(4−x_1 ^2 )))/2))  If denote by (x,y)−the coordinates of  the point I then we have   { ((x=((x_1 +4)/2) (1))),((y=((±(√(4−x_1 ^2 )))/2)  (2))) :}   From (2) we get (2y)^2 =4−x_1 ^2     ⇒4−x_1 ^2 =4y^2 ⇒x_1 ^2 =4(1−y^2 )(3)  From (1) we get x_1 ^2 =(2x−4)^2   =[2(x−2)]^2 =4(x−2)^2 (4)  From (3)and (4)we get  1−y^2 =(x−2)^2 ⇔(x−2)^2 +y^2 =1  This shows that the point I runs on  the circle with the centre having  the cordinates be (2,0) and the radius  equal to 1 when P remove on (O,2)

$$\mathrm{P}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right)\in\left(\mathrm{O},\mathrm{2}\right)\Rightarrow\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{y}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{4}\Rightarrow\mathrm{y}_{\mathrm{1}} =\pm\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{P}\left(\mathrm{x}_{\mathrm{1}} ,\pm\sqrt{\mathrm{4}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} }\right),\mathrm{I}\:−\mathrm{midpoint}\:\mathrm{of}\:\mathrm{AP} \\ $$$$\left(\mathrm{since}\:\mathrm{by}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{AI}:\mathrm{AP}=\mathrm{1}:\mathrm{2}\right) \\ $$$$\mathrm{since}\:\mathrm{A}\left(\mathrm{4},\mathrm{0}\right),\mathrm{we}\:\mathrm{have}\:\mathrm{I}\left(\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{4}}{\mathrm{2}},\frac{\pm\sqrt{\mathrm{4}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} }}{\mathrm{2}}\right) \\ $$$$\mathrm{If}\:\mathrm{denote}\:\mathrm{by}\:\left(\mathrm{x},\mathrm{y}\right)−\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{point}\:\mathrm{I}\:\mathrm{then}\:\mathrm{we}\:\mathrm{have} \\ $$$$\begin{cases}{\mathrm{x}=\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{4}}{\mathrm{2}}\:\left(\mathrm{1}\right)}\\{\mathrm{y}=\frac{\pm\sqrt{\mathrm{4}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} }}{\mathrm{2}}\:\:\left(\mathrm{2}\right)}\end{cases}\: \\ $$$$\mathrm{From}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get}\:\left(\mathrm{2y}\right)^{\mathrm{2}} =\mathrm{4}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} \:\: \\ $$$$\Rightarrow\mathrm{4}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{4y}^{\mathrm{2}} \Rightarrow\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{4}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{3}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{1}\right)\:\mathrm{we}\:\mathrm{get}\:\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} =\left(\mathrm{2x}−\mathrm{4}\right)^{\mathrm{2}} \\ $$$$=\left[\mathrm{2}\left(\mathrm{x}−\mathrm{2}\right)\right]^{\mathrm{2}} =\mathrm{4}\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{4}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{3}\right)\mathrm{and}\:\left(\mathrm{4}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{1}−\mathrm{y}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \Leftrightarrow\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{This}\:\mathrm{shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:\mathrm{I}\:\mathrm{runs}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{having} \\ $$$$\mathrm{the}\:\mathrm{cordinates}\:\mathrm{be}\:\left(\mathrm{2},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{radius} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{1}\:\mathrm{when}\:\mathrm{P}\:\mathrm{remove}\:\mathrm{on}\:\left(\mathrm{O},\mathrm{2}\right) \\ $$

Commented by peter frank last updated on 05/Oct/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com