Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109337 by ZiYangLee last updated on 22/Aug/20

x=cosθ, where ((3π)/2)<θ<2π, and that 2cosθ−sinθ=2,  show that (√(1−x^2 ))=2(1−x).  Hence or otherwise, find x and deduce that tan2θ=((24)/7)

x=cosθ,where3π2<θ<2π,andthat2cosθsinθ=2, showthat1x2=2(1x). Henceorotherwise,findxanddeducethattan2θ=247

Answered by Aziztisffola last updated on 22/Aug/20

(√(1−x^2 ))=(√(1−cos^2 θ))=−sinθ   =2−2cosθ=2(1−cosθ)=2(1−x)   (√(1−x^2 ))=2(1−x) ⇔1−x^2 =4(x^2 −2x+1)   5x^2 −8x+3=0   △=4 ⇒x_1 =1 ∧ x_2 =(3/5)  θ≠2π ⇒x≠1 ⇒x=(3/5)   tan2θ=((2tan(θ))/(1−tan^2 (θ)))   tanθ=((−(4/5))/(3/5))=−(4/3)   tan2θ=((2×((−4)/3))/(1−(((−4)/3))^2 ))=(((−8)/3)/(1−((16)/9)))   =((8×3)/7)=((24)/7)

1x2=1cos2θ=sinθ =22cosθ=2(1cosθ)=2(1x) 1x2=2(1x)1x2=4(x22x+1) 5x28x+3=0 =4x1=1x2=35 θ2πx1x=35 tan2θ=2tan(θ)1tan2(θ) tanθ=4535=43 tan2θ=2×431(43)2=831169 =8×37=247

Commented byZiYangLee last updated on 23/Aug/20

NICE!

NICE!

Answered by Don08q last updated on 22/Aug/20

 x = cosθ   x^2  = cos^2 θ   1 − x^2  = sin^2 θ   ± (√(1 − x^2 )) = sinθ   But for the interval, ((3π)/2)<θ<2π sine   has a negative value.  ⇒  − (√(1 − x^2 )) = sinθ   so   (√(1 − x^2 )) = −sinθ ............ (1)       But, 2cosθ − sinθ = 2  ⇒      2 − 2x = −sinθ             2(1 − x) = −sinθ ........... (2)   from (1) and (2),           (√(1 − x^2 )) = 2(1 − x)      qed     It follows that        1 − x^2  = 4(1 − 2x + x^2 )        5x^2  − 8x + 3 = 0        x = 1 or x = (3/5)    x cannot be 1, since θ < 2π   ∴  x = (3/5)    tanθ = ((sin θ)/(cos θ))    tanθ = ((−2(1 − x))/x)    tanθ = ((2(x − 1))/x)    tanθ = ((2((3/5) − 1))/(3/5))    tanθ = − (4/3)  But tan 2θ = ((2tan θ)/(1 − tan^2 θ))           tan 2θ = ((2(−(4/3)))/(1 − (−(4/3))^2 ))   ∴    tan 2θ =  ((24)/7)            qed

x=cosθ x2=cos2θ 1x2=sin2θ ±1x2=sinθ Butfortheinterval,3π2<θ<2πsine hasanegativevalue. 1x2=sinθ so1x2=sinθ............(1) But,2cosθsinθ=2 22x=sinθ 2(1x)=sinθ...........(2) from(1)and(2), 1x2=2(1x)qed Itfollowsthat 1x2=4(12x+x2) 5x28x+3=0 x=1orx=35 xcannotbe1,sinceθ<2π x=35 tanθ=sinθcosθ tanθ=2(1x)x tanθ=2(x1)x tanθ=2(351)35 tanθ=43 Buttan2θ=2tanθ1tan2θ tan2θ=2(43)1(43)2 tan2θ=247qed

Terms of Service

Privacy Policy

Contact: info@tinkutara.com