All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 109337 by ZiYangLee last updated on 22/Aug/20
x=cosθ,where3π2<θ<2π,andthat2cosθ−sinθ=2, showthat1−x2=2(1−x). Henceorotherwise,findxanddeducethattan2θ=247
Answered by Aziztisffola last updated on 22/Aug/20
1−x2=1−cos2θ=−sinθ =2−2cosθ=2(1−cosθ)=2(1−x) 1−x2=2(1−x)⇔1−x2=4(x2−2x+1) 5x2−8x+3=0 △=4⇒x1=1∧x2=35 θ≠2π⇒x≠1⇒x=35 tan2θ=2tan(θ)1−tan2(θ) tanθ=−4535=−43 tan2θ=2×−431−(−43)2=−831−169 =8×37=247
Commented byZiYangLee last updated on 23/Aug/20
NICE!
Answered by Don08q last updated on 22/Aug/20
x=cosθ x2=cos2θ 1−x2=sin2θ ±1−x2=sinθ Butfortheinterval,3π2<θ<2πsine hasanegativevalue. ⇒−1−x2=sinθ so1−x2=−sinθ............(1) But,2cosθ−sinθ=2 ⇒2−2x=−sinθ 2(1−x)=−sinθ...........(2) from(1)and(2), 1−x2=2(1−x)qed Itfollowsthat 1−x2=4(1−2x+x2) 5x2−8x+3=0 x=1orx=35 xcannotbe1,sinceθ<2π ∴x=35 tanθ=sinθcosθ tanθ=−2(1−x)x tanθ=2(x−1)x tanθ=2(35−1)35 tanθ=−43 Buttan2θ=2tanθ1−tan2θ tan2θ=2(−43)1−(−43)2 ∴tan2θ=247qed
Terms of Service
Privacy Policy
Contact: info@tinkutara.com