Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109342 by 150505R last updated on 22/Aug/20

Commented by maths mind last updated on 23/Aug/20

x=tg(t),dx=(1+tg^2 (t))dt  =∫_0 ^(π/4) ln(((cos^2 (t)−sin^2 (t))/(sin(t)cos(t)))).dt  =∫_0 ^(π/2) ln(2cot(r)).(dr/2)  =(π/4)ln(2)+∫_0 ^(π/2) ln(cos(r))dr−∫_0 ^(π/2) ln(sin(r))dr  =((πln(2))/4)

$${x}={tg}\left({t}\right),{dx}=\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{{cos}^{\mathrm{2}} \left({t}\right)−{sin}^{\mathrm{2}} \left({t}\right)}{{sin}\left({t}\right){cos}\left({t}\right)}\right).{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{2}{cot}\left({r}\right)\right).\frac{{dr}}{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({r}\right)\right){dr}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({r}\right)\right){dr} \\ $$$$=\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$$ \\ $$

Commented by mathdave last updated on 23/Aug/20

you should ve explain better how you change   ((cos^2 t−sin^2 t)/(sintcost))=2cot(r) for those that are not pro  like u .  let me put light on that area

$${you}\:{should}\:{ve}\:{explain}\:{better}\:{how}\:{you}\:{change}\: \\ $$$$\frac{\mathrm{cos}^{\mathrm{2}} {t}−\mathrm{sin}^{\mathrm{2}} {t}}{\mathrm{sin}{t}\mathrm{cos}{t}}=\mathrm{2cot}\left({r}\right)\:{for}\:{those}\:{that}\:{are}\:{not}\:{pro} \\ $$$${like}\:{u}\:. \\ $$$${let}\:{me}\:{put}\:{light}\:{on}\:{that}\:{area}\: \\ $$$$ \\ $$

Commented by mathdave last updated on 23/Aug/20

we known that cos2t=cos^2 t−sin^2 t    and  ((sin2t)/2)=costsint    so  ((cos^2 t−sin^2 t)/(sintcost))=2((cos2t)/(sin2t))=2cot(2t)  let r=2t     and  dt=(dt/2)  at limit  t⇒(π/4)   ,r⇒(π/2)   and  at limit t⇒0  ,r⇒0  note  ∫_0 ^(π/2) ln(cosr)=∫_0 ^(π/2) ln(sinx)=−(π/2)ln2

$${we}\:{known}\:{that}\:\mathrm{cos2}{t}=\mathrm{cos}^{\mathrm{2}} {t}−\mathrm{sin}^{\mathrm{2}} {t}\:\:\:\:{and} \\ $$$$\frac{\mathrm{sin2}{t}}{\mathrm{2}}=\mathrm{cos}{t}\mathrm{sin}{t}\:\:\:\:{so}\:\:\frac{{cos}^{\mathrm{2}} {t}−{sin}^{\mathrm{2}} {t}}{{sintcost}}=\mathrm{2}\frac{{cos}\mathrm{2}{t}}{{sin}\mathrm{2}{t}}=\mathrm{2}{cot}\left(\mathrm{2}{t}\right) \\ $$$${let}\:{r}=\mathrm{2}{t}\:\:\:\:\:{and}\:\:{dt}=\frac{{dt}}{\mathrm{2}} \\ $$$${at}\:{limit}\:\:{t}\Rightarrow\frac{\pi}{\mathrm{4}}\:\:\:,{r}\Rightarrow\frac{\pi}{\mathrm{2}}\:\:\:{and}\:\:{at}\:{limit}\:{t}\Rightarrow\mathrm{0}\:\:,{r}\Rightarrow\mathrm{0} \\ $$$${note}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}{r}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)=−\frac{\pi}{\mathrm{2}}\mathrm{ln2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com