Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109343 by 150505R last updated on 22/Aug/20

Commented by 150505R last updated on 22/Aug/20

please solve

pleasesolve

Answered by mathmax by abdo last updated on 23/Aug/20

A =∫_0 ^(1/2)  ((ln(1−x))/(2x^2 −2x +1))dx ⇒A =_(x=(t/2))    ∫_0 ^1  ((ln(1−(t/2)))/(2((t^2 /4))−2((t/2))+1))(dt/2)  =∫_0 ^1  ((ln(2−t))/(2{ (t^2 /2)−t +1})) dt =∫_0 ^1  ((ln(2−t))/(t^2 −2t +2)) dt  =_(t=1−u)       ∫_1 ^0  ((ln(2−1+u))/((1−u)^2 −2(1−u) +2))(−du)  =∫_0 ^1  ((ln(1+u))/(u^2 −2u+1−2+2u +2)) du =∫_0 ^1  ((ln(1+u))/(1+u^2 )) du  =_(u=tanθ)    ∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  =∫_0 ^(π/4) ln(1+((sinθ)/(cosθ)))dθ =∫_0 ^(π/4)  ln(cosθ +sinθ)dθ−∫_0 ^(π/4)  ln(cosθ)dθ  and all those integrals are known in the platform  )i dont remember the values)....

A=012ln(1x)2x22x+1dxA=x=t201ln(1t2)2(t24)2(t2)+1dt2=01ln(2t)2{t22t+1}dt=01ln(2t)t22t+2dt=t=1u10ln(21+u)(1u)22(1u)+2(du)=01ln(1+u)u22u+12+2u+2du=01ln(1+u)1+u2du=u=tanθ0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(1+sinθcosθ)dθ=0π4ln(cosθ+sinθ)dθ0π4ln(cosθ)dθandallthoseintegralsareknownintheplatform)idontrememberthevalues)....

Answered by mathdave last updated on 22/Aug/20

my solution here it goes   I=∫_0 ^(1/2) ((ln(1−x))/((2x^2 −2x+1)))dx=(2/2)∫_0 ^(1/2) ((ln(1−x))/((2x^2 −2x+1)))dx=2∫_0 ^(1/2) ((ln(1−x))/((4x^2 −4x+2)))dx  I=2∫_0 ^(1/2) ((ln(1−x))/((2x−1)^2 +1))dx  (let  2x−1=y   and  dx=(dy/2))  I=(2/2)∫_(−1) ^0 ((ln(1−(((1+y)/2))))/(y^2 +1))dy=∫_(−1) ^0 ((ln(((1−y)/2)))/(1+y^2 ))dy  let  y=−t   dy=−dt  I=∫_1 ^0 ((ln(((1+t)/2)))/(1+t^2 ))×−dt=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt−∫_0 ^1 ((ln2)/(1+t^2 ))dt  I=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt−ln2[tan^(−1) (t)]_0 ^1 =∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt−(π/4)ln2  let  tanx=t     and   dt=sec^2 xdx   and   1+tan^2 x=sec^2 x  I=∫_0 ^(π/4) ((ln(1+tanx))/(sec^2 x))×sec^2 xdx−(π/4)ln2=∫_0 ^(π/4) ln(1+((sinx)/(cosx)))dx−(π/4)ln2  I=∫_0 ^(π/4) ln(((sinx+cosx)/(cosx)))dx−(π/4)ln2=∫_0 ^(π/4) ln(cosx+sinx)dx−∫_0 ^(π/4) ln(cosx)dx−(π/4)ln2  since ∫_0 ^(π/2) ln(cosx+sinx)dx=G−(π/4)ln2  ∵∫_0 ^(π/4) ln(cosx+sinx)dx=(1/2)∫_0 ^(π/2) ln(cosx+sinx)dx=(1/2)(G−(π/4)ln2)  and  ∫_0 ^(π/4) ln(cosx)dx=(G/2)−(π/4)ln2      when  uding this  identity of   ln(cosx)=−ln2+Σ_(n=1) ^∞ (((−1)^(n+1) cos(2nx))/n)   from  fourier series  ∵I=(G/2)−(π/8)ln2−[(G/2)−(π/4)ln2]−(π/4)ln2  I=(G/2)−(G/2)−(π/8)ln2+(π/4)ln2−(π/4)ln2=−(π/8)ln2  ∵∫_0 ^(1/2) ((ln(1−x))/(2x^2 −2x+1))dx=−(π/8)ln2  by mathdave(22/08/2020)

mysolutionhereitgoesI=012ln(1x)(2x22x+1)dx=22012ln(1x)(2x22x+1)dx=2012ln(1x)(4x24x+2)dxI=2012ln(1x)(2x1)2+1dx(let2x1=yanddx=dy2)I=2210ln(1(1+y2))y2+1dy=10ln(1y2)1+y2dylety=tdy=dtI=10ln(1+t2)1+t2×dt=01ln(1+t)1+t2dt01ln21+t2dtI=01ln(1+t)1+t2dtln2[tan1(t)]01=01ln(1+t)1+t2dtπ4ln2lettanx=tanddt=sec2xdxand1+tan2x=sec2xI=0π4ln(1+tanx)sec2x×sec2xdxπ4ln2=0π4ln(1+sinxcosx)dxπ4ln2I=0π4ln(sinx+cosxcosx)dxπ4ln2=0π4ln(cosx+sinx)dx0π4ln(cosx)dxπ4ln2since0π2ln(cosx+sinx)dx=Gπ4ln20π4ln(cosx+sinx)dx=120π2ln(cosx+sinx)dx=12(Gπ4ln2)and0π4ln(cosx)dx=G2π4ln2whenudingthisidentityofln(cosx)=ln2+n=1(1)n+1cos(2nx)nfromfourierseriesI=G2π8ln2[G2π4ln2]π4ln2I=G2G2π8ln2+π4ln2π4ln2=π8ln2012ln(1x)2x22x+1dx=π8ln2bymathdave(22/08/2020)

Commented by mnjuly1970 last updated on 23/Aug/20

sir. tikalla mo barinam ti  fargh sar man beshasham...

sir.tikallamobarinamtifarghsarmanbeshasham...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com