Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 10944 by 314159 last updated on 03/Mar/17

Find all ordered pairs (a,b) so that ((ab)/(a+b)) is an integer.  (a and b are integers).

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{ordered}\:\mathrm{pairs}\:\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{so}\:\mathrm{that}\:\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$$$\left(\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{integers}\right). \\ $$

Commented by FilupS last updated on 03/Mar/17

n=((ab)/(a+b)),     n, a, b ∈ Z     n=((ab)/(a+b))    ⇒    ab≥a+b  ∵∀(ab<a+b) ⇒ 0<n<1 ⇒ n∉Z     ab≥a+b  a(b−1)=b  a=(b/(b−1))  ∴ (b/(b−1))∈Z  if b=2   ⇒   a=(2/(2−1))=2     ∴(2, 2) is a solution.  I am unsure if this is the only solution  because this is a bad attempt

$${n}=\frac{{ab}}{{a}+{b}},\:\:\:\:\:{n},\:{a},\:{b}\:\in\:\mathbb{Z} \\ $$$$\: \\ $$$${n}=\frac{{ab}}{{a}+{b}}\:\:\:\:\Rightarrow\:\:\:\:{ab}\geqslant{a}+{b} \\ $$$$\because\forall\left({ab}<{a}+{b}\right)\:\Rightarrow\:\mathrm{0}<{n}<\mathrm{1}\:\Rightarrow\:{n}\notin\mathbb{Z} \\ $$$$\: \\ $$$${ab}\geqslant{a}+{b} \\ $$$${a}\left({b}−\mathrm{1}\right)={b} \\ $$$${a}=\frac{{b}}{{b}−\mathrm{1}} \\ $$$$\therefore\:\frac{{b}}{{b}−\mathrm{1}}\in\mathbb{Z} \\ $$$$\mathrm{if}\:{b}=\mathrm{2}\:\:\:\Rightarrow\:\:\:{a}=\frac{\mathrm{2}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$$$\: \\ $$$$\therefore\left(\mathrm{2},\:\mathrm{2}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{unsure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution} \\ $$$$\mathrm{because}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{bad}\:\mathrm{attempt} \\ $$

Commented by mrW1 last updated on 04/Mar/17

i think there should be infinite number pairs:  2/2  3/6  4/4    4/12  5/20  6/6    6/12    6/30  7/42  8/8    8/24    8/56  9/18    9/72  10/10    10/15    10/40  11/110  12/12    12/24    12/36    12/60   12/132  13/156  14/14    14/84    14/182  ......

$${i}\:{think}\:{there}\:{should}\:{be}\:{infinite}\:{number}\:{pairs}: \\ $$$$\mathrm{2}/\mathrm{2} \\ $$$$\mathrm{3}/\mathrm{6} \\ $$$$\mathrm{4}/\mathrm{4}\:\:\:\:\mathrm{4}/\mathrm{12} \\ $$$$\mathrm{5}/\mathrm{20} \\ $$$$\mathrm{6}/\mathrm{6}\:\:\:\:\mathrm{6}/\mathrm{12}\:\:\:\:\mathrm{6}/\mathrm{30} \\ $$$$\mathrm{7}/\mathrm{42} \\ $$$$\mathrm{8}/\mathrm{8}\:\:\:\:\mathrm{8}/\mathrm{24}\:\:\:\:\mathrm{8}/\mathrm{56} \\ $$$$\mathrm{9}/\mathrm{18}\:\:\:\:\mathrm{9}/\mathrm{72} \\ $$$$\mathrm{10}/\mathrm{10}\:\:\:\:\mathrm{10}/\mathrm{15}\:\:\:\:\mathrm{10}/\mathrm{40} \\ $$$$\mathrm{11}/\mathrm{110} \\ $$$$\mathrm{12}/\mathrm{12}\:\:\:\:\mathrm{12}/\mathrm{24}\:\:\:\:\mathrm{12}/\mathrm{36}\:\:\:\:\mathrm{12}/\mathrm{60}\:\:\:\mathrm{12}/\mathrm{132} \\ $$$$\mathrm{13}/\mathrm{156} \\ $$$$\mathrm{14}/\mathrm{14}\:\:\:\:\mathrm{14}/\mathrm{84}\:\:\:\:\mathrm{14}/\mathrm{182} \\ $$$$...... \\ $$

Answered by mrW1 last updated on 04/Mar/17

let ((ab)/(a+b))=n  let b≥a and b=ka (k≥1)  ⇒((aka)/((1+k)a))=n  a=((1+k)/k)×n=n+(n/k)  with (n/k)=i or k=(n/i)  ⇒a=n+i  b=ka=(n/i)(n+i)=n(1+(n/i))  with (n/i)=j or n=ji  ⇒a=n+i=ji+i=(1+j)i  ⇒b=n(1+j)=j(1+j)i    i.e. the solution is   { ((a=(1+j)i)),((b=j(1+j)i)) :}  i,j∈N    e.g.  i=1, j=1,2,3,4...  a/b=2/2, 3/6, 4/12, 5/20, 6/30......    i=2, j=1,2,3,4...  a/b=4/4, 6/12, 8/24, 10/40, 12/60......    i=3, j=1,2,3,4...  a/b=6/6, 9/18, 12/36, 15/60, 18/90......  .....    We see in the solution that a is the  product of 2 numbers and b is the  product of 3 numbers and b=a×j.    For every a ≥2,   if a is a prime number, there is one  corresponding value for b, and  if a is no prime number, there are two  or more corresponding values for b.    E.g. a=7 (prime number) which can  only be expressed as  7×1   (j=6)  ⇒there is only one value for b:  b=7×6=42    E.g. a=12 which can be expressed as  12×1  (j=11)  3×4   (j=2)  4×3   (j=3)  2×6   (j=1)  6×2   (j=5)  ⇒there are 5 values for b:  b=12×1=12  b=12×2=24  b=12×3=36  b=12×5=60  b=12×11=132    the pairs of a and b for a from 2 till 14  see comment above.

$${let}\:\frac{{ab}}{{a}+{b}}={n} \\ $$$${let}\:{b}\geqslant{a}\:{and}\:{b}={ka}\:\left({k}\geqslant\mathrm{1}\right) \\ $$$$\Rightarrow\frac{{aka}}{\left(\mathrm{1}+{k}\right){a}}={n} \\ $$$${a}=\frac{\mathrm{1}+{k}}{{k}}×{n}={n}+\frac{{n}}{{k}} \\ $$$${with}\:\frac{{n}}{{k}}={i}\:{or}\:{k}=\frac{{n}}{{i}} \\ $$$$\Rightarrow{a}={n}+{i} \\ $$$${b}={ka}=\frac{{n}}{{i}}\left({n}+{i}\right)={n}\left(\mathrm{1}+\frac{{n}}{{i}}\right) \\ $$$${with}\:\frac{{n}}{{i}}={j}\:{or}\:{n}={ji} \\ $$$$\Rightarrow{a}={n}+{i}={ji}+{i}=\left(\mathrm{1}+{j}\right){i} \\ $$$$\Rightarrow{b}={n}\left(\mathrm{1}+{j}\right)={j}\left(\mathrm{1}+{j}\right){i} \\ $$$$ \\ $$$${i}.{e}.\:{the}\:{solution}\:{is} \\ $$$$\begin{cases}{{a}=\left(\mathrm{1}+{j}\right){i}}\\{{b}={j}\left(\mathrm{1}+{j}\right){i}}\end{cases} \\ $$$${i},{j}\in\mathbb{N} \\ $$$$ \\ $$$${e}.{g}. \\ $$$${i}=\mathrm{1},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}... \\ $$$${a}/{b}=\mathrm{2}/\mathrm{2},\:\mathrm{3}/\mathrm{6},\:\mathrm{4}/\mathrm{12},\:\mathrm{5}/\mathrm{20},\:\mathrm{6}/\mathrm{30}...... \\ $$$$ \\ $$$${i}=\mathrm{2},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}... \\ $$$${a}/{b}=\mathrm{4}/\mathrm{4},\:\mathrm{6}/\mathrm{12},\:\mathrm{8}/\mathrm{24},\:\mathrm{10}/\mathrm{40},\:\mathrm{12}/\mathrm{60}...... \\ $$$$ \\ $$$${i}=\mathrm{3},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}... \\ $$$${a}/{b}=\mathrm{6}/\mathrm{6},\:\mathrm{9}/\mathrm{18},\:\mathrm{12}/\mathrm{36},\:\mathrm{15}/\mathrm{60},\:\mathrm{18}/\mathrm{90}...... \\ $$$$..... \\ $$$$ \\ $$$${We}\:{see}\:{in}\:{the}\:{solution}\:{that}\:{a}\:{is}\:{the} \\ $$$${product}\:{of}\:\mathrm{2}\:{numbers}\:{and}\:{b}\:{is}\:{the} \\ $$$${product}\:{of}\:\mathrm{3}\:{numbers}\:{and}\:{b}={a}×{j}. \\ $$$$ \\ $$$${For}\:{every}\:{a}\:\geqslant\mathrm{2},\: \\ $$$${if}\:{a}\:{is}\:{a}\:{prime}\:{number},\:{there}\:{is}\:{one} \\ $$$${corresponding}\:{value}\:{for}\:{b},\:{and} \\ $$$${if}\:{a}\:{is}\:{no}\:{prime}\:{number},\:{there}\:{are}\:{two} \\ $$$${or}\:{more}\:{corresponding}\:{values}\:{for}\:{b}. \\ $$$$ \\ $$$${E}.{g}.\:{a}=\mathrm{7}\:\left({prime}\:{number}\right)\:{which}\:{can} \\ $$$${only}\:{be}\:{expressed}\:{as} \\ $$$$\mathrm{7}×\mathrm{1}\:\:\:\left({j}=\mathrm{6}\right) \\ $$$$\Rightarrow{there}\:{is}\:{only}\:{one}\:{value}\:{for}\:{b}: \\ $$$${b}=\mathrm{7}×\mathrm{6}=\mathrm{42} \\ $$$$ \\ $$$${E}.{g}.\:{a}=\mathrm{12}\:{which}\:{can}\:{be}\:{expressed}\:{as} \\ $$$$\mathrm{12}×\mathrm{1}\:\:\left({j}=\mathrm{11}\right) \\ $$$$\mathrm{3}×\mathrm{4}\:\:\:\left({j}=\mathrm{2}\right) \\ $$$$\mathrm{4}×\mathrm{3}\:\:\:\left({j}=\mathrm{3}\right) \\ $$$$\mathrm{2}×\mathrm{6}\:\:\:\left({j}=\mathrm{1}\right) \\ $$$$\mathrm{6}×\mathrm{2}\:\:\:\left({j}=\mathrm{5}\right) \\ $$$$\Rightarrow{there}\:{are}\:\mathrm{5}\:{values}\:{for}\:{b}: \\ $$$${b}=\mathrm{12}×\mathrm{1}=\mathrm{12} \\ $$$${b}=\mathrm{12}×\mathrm{2}=\mathrm{24} \\ $$$${b}=\mathrm{12}×\mathrm{3}=\mathrm{36} \\ $$$${b}=\mathrm{12}×\mathrm{5}=\mathrm{60} \\ $$$${b}=\mathrm{12}×\mathrm{11}=\mathrm{132} \\ $$$$ \\ $$$${the}\:{pairs}\:{of}\:{a}\:{and}\:{b}\:{for}\:{a}\:{from}\:\mathrm{2}\:{till}\:\mathrm{14} \\ $$$${see}\:{comment}\:{above}. \\ $$

Commented by FilupS last updated on 04/Mar/17

I Tried a slimilar subtitution, but couldnt  work with it.Awesome job

$$\mathrm{I}\:\mathrm{Tried}\:\mathrm{a}\:\mathrm{slimilar}\:\mathrm{subtitution},\:\mathrm{but}\:\mathrm{couldnt} \\ $$$$\mathrm{work}\:\mathrm{with}\:\mathrm{it}.\mathrm{Awesome}\:\mathrm{job} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com