Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109516 by ajfour last updated on 24/Aug/20

cos (1−i)=a+ib  Find  a, b.

$$\mathrm{cos}\:\left(\mathrm{1}−{i}\right)={a}+{ib} \\ $$$${Find}\:\:{a},\:{b}. \\ $$

Answered by Dwaipayan Shikari last updated on 24/Aug/20

cos(1−i)=((e^(i(1−i)) +e^(−i(1−i)) )/2)=((e^(1+i) +e^(−(1+i)) )/2)=e(e^i /2)+(1/e).(e^(−i) /2)  (1/2)(e(cos1+isin(1))+(1/e)(cos(1)−isin(1)))  ((e^2 +1)/(2e))cos(1)+(1/2)isin(1)(e−(1/e))  ((e^2 +1)/(2e))cos(1)+i(((e^2 −1)/(2e)))sin(1)  a=((e^2 +1)/(2e))cos(1)  b=((e^2 −1)/(2e))sin(1)

$${cos}\left(\mathrm{1}−{i}\right)=\frac{{e}^{{i}\left(\mathrm{1}−{i}\right)} +{e}^{−{i}\left(\mathrm{1}−{i}\right)} }{\mathrm{2}}=\frac{{e}^{\mathrm{1}+{i}} +{e}^{−\left(\mathrm{1}+{i}\right)} }{\mathrm{2}}={e}\frac{{e}^{{i}} }{\mathrm{2}}+\frac{\mathrm{1}}{{e}}.\frac{{e}^{−{i}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({e}\left({cos}\mathrm{1}+{isin}\left(\mathrm{1}\right)\right)+\frac{\mathrm{1}}{{e}}\left({cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right)\right) \\ $$$$\frac{{e}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{e}}{cos}\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}{isin}\left(\mathrm{1}\right)\left({e}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\frac{{e}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{e}}{cos}\left(\mathrm{1}\right)+{i}\left(\frac{{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{e}}\right){sin}\left(\mathrm{1}\right) \\ $$$${a}=\frac{{e}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{e}}{cos}\left(\mathrm{1}\right) \\ $$$${b}=\frac{{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{e}}{sin}\left(\mathrm{1}\right) \\ $$

Commented by ajfour last updated on 24/Aug/20

cos θ=((e^(iθ) +e^(−iθ) )/2)      Sir...

$$\mathrm{cos}\:\theta=\frac{{e}^{{i}\theta} +{e}^{−{i}\theta} }{\mathrm{2}}\:\:\:\:\:\:{Sir}... \\ $$

Answered by 1549442205PVT last updated on 24/Aug/20

cos (1−i)=((e^(i(1−i)) +e^(−i(1−i)) )/2)  =((e^(1+i) +e^(−(1+i)) )/2)=((e.e^i +e^(−1) .e^(−i) )/2)  =(e/2)×(cos(1)+isin(1))+(e^(−1) /2)×(cos(1)−isin(1))  =((e+e^(−1) )/2)cos(1)+i(((e−e^(−1) )/2).sin(1))  =a+bi.Therefore,   { ((a=((e+e^(−1) )/2)cos(1))),((b=((e−e^(−1) )/2).sin(1))) :}

$$\mathrm{cos}\:\left(\mathrm{1}−\mathrm{i}\right)=\frac{\mathrm{e}^{\mathrm{i}\left(\mathrm{1}−\mathrm{i}\right)} +\mathrm{e}^{−\mathrm{i}\left(\mathrm{1}−\mathrm{i}\right)} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{e}^{\mathrm{1}+\mathrm{i}} +\mathrm{e}^{−\left(\mathrm{1}+\mathrm{i}\right)} }{\mathrm{2}}=\frac{\mathrm{e}.\mathrm{e}^{\mathrm{i}} +\mathrm{e}^{−\mathrm{1}} .\mathrm{e}^{−\mathrm{i}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{e}}{\mathrm{2}}×\left(\mathrm{cos}\left(\mathrm{1}\right)+\mathrm{isin}\left(\mathrm{1}\right)\right)+\frac{\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}×\left(\mathrm{cos}\left(\mathrm{1}\right)−\mathrm{isin}\left(\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{e}+\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}\mathrm{cos}\left(\mathrm{1}\right)+\mathrm{i}\left(\frac{\mathrm{e}−\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}.\mathrm{sin}\left(\mathrm{1}\right)\right) \\ $$$$=\mathrm{a}+\mathrm{bi}.\mathrm{Therefore}, \\ $$$$\begin{cases}{\mathrm{a}=\frac{\mathrm{e}+\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}\mathrm{cos}\left(\mathrm{1}\right)}\\{\mathrm{b}=\frac{\mathrm{e}−\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}.\mathrm{sin}\left(\mathrm{1}\right)}\end{cases} \\ $$

Commented by ajfour last updated on 24/Aug/20

Thank you so much Sir!

$${Thank}\:{you}\:{so}\:{much}\:{Sir}! \\ $$

Commented by 1549442205PVT last updated on 24/Aug/20

You are welcome.

$$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Answered by mathmax by abdo last updated on 24/Aug/20

cos(1−i) =ch(i+1) =((e^(i+1)  +e^(−i−1) )/2) =(1/2){e (cos1 +isin1)+e^(−1) (cos1−isin(1))  =(1/2){  (e+e^(−1) )cos(1)+i (e−e^(−1) )sin(1)} =a+ib ⇒  a =((e+e^(−1) )/2)cos(1) and b =((e−e^(−1) )/2)sin(1)

$$\mathrm{cos}\left(\mathrm{1}−\mathrm{i}\right)\:=\mathrm{ch}\left(\mathrm{i}+\mathrm{1}\right)\:=\frac{\mathrm{e}^{\mathrm{i}+\mathrm{1}} \:+\mathrm{e}^{−\mathrm{i}−\mathrm{1}} }{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{e}\:\left(\mathrm{cos1}\:+\mathrm{isin1}\right)+\mathrm{e}^{−\mathrm{1}} \left(\mathrm{cos1}−\mathrm{isin}\left(\mathrm{1}\right)\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:\left(\mathrm{e}+\mathrm{e}^{−\mathrm{1}} \right)\mathrm{cos}\left(\mathrm{1}\right)+\mathrm{i}\:\left(\mathrm{e}−\mathrm{e}^{−\mathrm{1}} \right)\mathrm{sin}\left(\mathrm{1}\right)\right\}\:=\mathrm{a}+\mathrm{ib}\:\Rightarrow \\ $$$$\mathrm{a}\:=\frac{\mathrm{e}+\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}\mathrm{cos}\left(\mathrm{1}\right)\:\mathrm{and}\:\mathrm{b}\:=\frac{\mathrm{e}−\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}\mathrm{sin}\left(\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com