Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109546 by bemath last updated on 24/Aug/20

If f(x) continue in [ 1,30] and   ∫_6 ^(30) f(x)dx = 30, then ∫_1 ^9 f(3y+3)dy = __

$${If}\:{f}\left({x}\right)\:{continue}\:{in}\:\left[\:\mathrm{1},\mathrm{30}\right]\:{and}\: \\ $$$$\underset{\mathrm{6}} {\overset{\mathrm{30}} {\int}}{f}\left({x}\right){dx}\:=\:\mathrm{30},\:{then}\:\underset{\mathrm{1}} {\overset{\mathrm{9}} {\int}}{f}\left(\mathrm{3}{y}+\mathrm{3}\right){dy}\:=\:\_\_ \\ $$

Commented by kaivan.ahmadi last updated on 24/Aug/20

t=3y+3⇒dt=3dy⇒dy=(1/3)dt  y=1⇒t=6  y=9⇒t=30  (1/3)∫_6 ^(30) f(t)dt=(1/3)×30=10

$${t}=\mathrm{3}{y}+\mathrm{3}\Rightarrow{dt}=\mathrm{3}{dy}\Rightarrow{dy}=\frac{\mathrm{1}}{\mathrm{3}}{dt} \\ $$$${y}=\mathrm{1}\Rightarrow{t}=\mathrm{6} \\ $$$${y}=\mathrm{9}\Rightarrow{t}=\mathrm{30} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{6}} ^{\mathrm{30}} {f}\left({t}\right){dt}=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{30}=\mathrm{10} \\ $$

Commented by bemath last updated on 24/Aug/20

cooll..thanks

$${cooll}..{thanks} \\ $$

Answered by 1549442205PVT last updated on 24/Aug/20

Put x=3y+3⇒dx=3dy.Then  ∫_1 ^( 9) f(3y+3)dy=(1/3)∫_6 ^( 30) f(x)dx=(1/3)×30=10

$$\mathrm{Put}\:\mathrm{x}=\mathrm{3y}+\mathrm{3}\Rightarrow\mathrm{dx}=\mathrm{3dy}.\mathrm{Then} \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{9}} \mathrm{f}\left(\mathrm{3y}+\mathrm{3}\right)\mathrm{dy}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{6}} ^{\:\mathrm{30}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{30}=\mathrm{10} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com