Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109584 by bobhans last updated on 24/Aug/20

   ((−♭o♭−)/(hans))  (1)(√(x−(√(x−(1/4))))) ≥ (1/4)  (2)∣a^→ ∣ = 1, ∣b^→ ∣ = 2 , ∣c^→ ∣=3 , ∠(a^→ ,b^→ )=90°          ∠(b^→ ,c^→ )=60° , ∠(a^→ ,c^→ )=120° , then         ∣a^→ +b^→ −c^→ ∣=?  (3) { ((x^(log _3 (y)) +y^(log _3 (x)) =18)),((log _3 (x)+log _3 (y)=3)) :} . Find the solution

ohans(1)xx1414(2)a=1,b=2,c∣=3,(a,b)=90°(b,c)=60°,(a,c)=120°,thena+bc∣=?(3){xlog3(y)+ylog3(x)=18log3(x)+log3(y)=3.Findthesolution

Commented by bemath last updated on 25/Aug/20

    •((♭ε)/(math))•  (3)  { ((y^(log _3 (x)) +y^(log _3 (x)) =18)),((log _3 (x)+log _3 (y) = 3)) :}→ { ((y^(log _3 (x)) =9)),((log _3 (x)+log _3 (y)=3)) :}  log _3 (y)×log _3 (x)=2 ∧log _3 (x)+log _3 (y)=3  let  { ((log _3 (x)=p)),((log _3 (y)=q)) :}→ { ((pq=2)),((p+q=3)) :}  ⇔p(3−p)=2 →p^2 −3p+2=0   { ((p=1→q=2)),((p=2→q=1)) :}→ { ((x=3 ∧y=9)),((x=9 ∧y =3)) :}

ϵmath(3){ylog3(x)+ylog3(x)=18log3(x)+log3(y)=3{ylog3(x)=9log3(x)+log3(y)=3log3(y)×log3(x)=2log3(x)+log3(y)=3let{log3(x)=plog3(y)=q{pq=2p+q=3p(3p)=2p23p+2=0{p=1q=2p=2q=1{x=3y=9x=9y=3

Answered by bemath last updated on 24/Aug/20

   ((↭♭ε↭)/(ΔMathΔ))  (2)consider a^→ .a^→  = ∣a^→ ∣^2   (a^→ +b^→ −c^→ )○(a^→ +b^→ −c^→ )= ∣a^→ +b^→ −c^→ ∣^2   ∣a^→ ∣^2 +2 a^→ ○b^→ −2 a^→ ○c^→ +∣b^→ ∣^2 −2 b^→ ○c^→ +∣c^→ ∣=  ∣a^→ +b^→ −c^→ ∣^2   1+4+9+0−2(1)(3)(−(1/2))−2(2)(3)((1/2))=  ∣a^→ +b^→ −c^→ ∣^2   14+3−6=∣a^→ +b^→ −c^→ ∣^2   ∴ ∣a^→ +b^→ −c^→ ∣ = (√(11))

ϵΔMathΔ(2)considera.a=a2(a+bc)(a+bc)=a+bc2a2+2ab2ac+b22bc+c∣=a+bc21+4+9+02(1)(3)(12)2(2)(3)(12)=a+bc214+36=∣a+bc2a+bc=11

Commented by bobhans last updated on 25/Aug/20

yeahh...

yeahh...

Answered by john santu last updated on 24/Aug/20

(√(x−(√(x−(1/4))))) ≥ (1/4)  ⇒x−(√(x−(1/4))) ≥ (1/(16))  ⇒x−(1/(16)) ≥ (√(x−(1/4))) ; x > (1/(16)) (1)  ⇒x^2 −(x/8)+(1/(256)) ≥x−(1/4)  ⇒x^2 −((9x)/8)+((65)/(256)) ≥ 0  ⇒(x−(9/(16)))^2 −((81)/(256))+((65)/(256)) ≥ 0  ⇒(x−(9/(16)))^2 −((4/(16)))^2 ≥ 0  ⇒(x−((13)/(16)))(x−(5/(16)))≥0  ⇒x ≤ (5/(16)) ∪ x ≥ ((13)/(16)) (2)  ⇒(√(x−(1/4))) define for x ≥ (4/(16)) (3)  solution we get from (1)∩(2)∩(3)  x ∈ [ (1/4), (5/(16)) ] ∪ [ ((13)/(16)) ,∞ )

xx1414xx14116x116x14;x>116(1)x2x8+1256x14x29x8+652560(x916)281256+652560(x916)2(416)20(x1316)(x516)0x516x1316(2)x14defineforx416(3)solutionwegetfrom(1)(2)(3)x[14,516][1316,)

Commented by bobhans last updated on 25/Aug/20

yuhhuuyy

yuhhuuyy

Answered by 1549442205PVT last updated on 24/Aug/20

Solve the inequality  (1)(√(x−(√(x−(1/4))))) ≥ (1/4)  We need must have the condition that  x≥(1/4) in order to define the root.Under  this condition squaring two sides of   the inequality we get an equivalent  inequality  x−(√(x−(1/4))) ≥(1/(16))⇔x−(1/(16))≥(√(x−(1/4)))  Since both sides are positive,squaring  again we get   ⇔x^2 −(1/8)x+(1/(256))≥x−(1/4)  ⇔256x^2 −288x+65≥0(2)  Δ′=144^2 −256.65=16^2 .(9^2 −65)=16^3   (√Δ) =64,x_(1,2) =((144±64)/(256))∈{((13)/(16));(5/(16))}  ⇒(2)⇔x∈(−∞;(5/(16))]∪[((13)/(16));+∞)  Combining to the condition x≥(1/4)  we get roots of given inequality be  x∈[(1/4);(5/(16))]∪[((13)/(16));+∞)  2)∣a^(→) +b^(→) −c^(→) ∣^2 =a^2 +b^2 +c^2 +2a^(→) .b^(→) −2a^(→) .c^(→)   −2b^(→) .c^(→) =1^2 +2^2 +3^2 +2∣a∣.∣b∣cos90°  −2∣a∣.∣c∣cos120°−2∣b∣.∣c∣cos60°  =14+2.1.2×0−2×1×3(−0.5)  −2.2.3.0.5=14+3−6=11  Hence,∣a^(→) +b^(→) −c^(→) ∣=(√(11))

Solvetheinequality(1)xx1414Weneedmusthavetheconditionthatx14inordertodefinetheroot.Underthisconditionsquaringtwosidesoftheinequalitywegetanequivalentinequalityxx14116x116x14Sincebothsidesarepositive,squaringagainwegetx218x+1256x14256x2288x+650(2)Δ=1442256.65=162.(9265)=163Δ=64,x1,2=144±64256{1316;516}(2)x(;516][1316;+)Combiningtotheconditionx14wegetrootsofgiveninequalitybex[14;516][1316;+)2)a+bc2=a2+b2+c2+2a.b2a.c2b.c=12+22+32+2a.bcos90°2a.ccos120°2b.ccos60°=14+2.1.2×02×1×3(0.5)2.2.3.0.5=14+36=11Hence,a+bc∣=11

Terms of Service

Privacy Policy

Contact: info@tinkutara.com